Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A substantial amount of hidden magnetic energy in the quiet Sun

Abstract

Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating1,2,3. At present, we can see only 1 per cent of the complex magnetism of the quiet Sun1,4,5,6,7, which highlights the need to develop a reliable way to investigate the remaining 99 per cent. Here we report three-dimensional radiative transfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data8,9,10,11, we find a ubiquitous tangled magnetic field with an average strength of 130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations12,13, and sufficient to balance radiative energy losses from the solar chromosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectropolarimetric observations versus 3D modelling of the Hanle effect.
Figure 2: Evidence for a ‘turbulent’ field organized at the spatial scales of the solar granulation pattern.

Similar content being viewed by others

References

  1. Stenflo, J. O. Solar Magnetic Fields: Polarized Radiation Diagnostics (Kluwer, Dordrecht, 1994)

    Book  Google Scholar 

  2. Schrijver, C. J. et al. Large-scale coronal heating by the small-scale magnetic field of the Sun. Nature 394, 152–154 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Schrijver, C. J. & Title, A. The magnetic connection between the solar photosphere and the corona. Astrophys. J. 597, L165–L168 (2003)

    Article  ADS  Google Scholar 

  4. Lin, H. & Rimmele, T. The granular magnetic fields of the quiet Sun. Astrophys. J. 514, 448–455 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Sánchez Almeida, J. & Lites, B. Physical properties of the solar magnetic photosphere under the MISMA hypothesis. II. Network and internetwork fields at the disk center. Astrophys. J. 532, 1215–1229 (2000)

    Article  ADS  Google Scholar 

  6. Domínguez Cerdeña, I., Kneer, F. & Sánchez Almeida, J. Quiet-Sun magnetic fields at high spatial resolution. Astrophys. J. 582, L55–L58 (2003)

    Article  ADS  Google Scholar 

  7. Khomenko, E., Collados, M., Solanki, S. K., Lagg, A. & Trujillo Bueno, J. Quiet-Sun internetwork magnetic fields observed in the infrared. Astron. Astrophys. 408, 1115–1135 (2003)

    Article  ADS  Google Scholar 

  8. Stenflo, J. O., Bianda, M., Keller, C. & Solanki, S. K. Center-to-limb variation of the second solar spectrum. Astron. Astrophys. 322, 985–994 (1997)

    ADS  Google Scholar 

  9. Trujillo Bueno, J., Collados, M., Paletou, F. & Molodij, G. in Advanced Solar Polarimetry: Theory, Observations and Instrumentation (ed. Sigwarth, M.) 141–149 (ASP Conf. Ser. Vol. 236, Astronomical Society of the Pacific, San Francisco, 2001)

    Google Scholar 

  10. Bommier, V. & Molodij, G. Some THEMIS-MTR observations of the second solar spectrum (2000 campaign). Astron. Astrophys. 381, 241–252 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Gandorfer, A. The Second Solar Spectrum Vol. 1, 4625 Å to 6995 Å (vdf, Zurich, 2000)

    Google Scholar 

  12. Faurobert-Scholl, M., Feautrier, N., Machefert, F., Petrovay, K. & Spielfiedel, A. Turbulent magnetic fields in the solar photosphere: diagnostics and interpretation. Astron. Astrophys. 298, 289–302 (1995)

    ADS  CAS  Google Scholar 

  13. Faurobert, M., Arnaud, J., Vigneau, J. & Frisch, H. Investigation of weak solar magnetic fields. New observational results for the Sr i 460.7 nm linear polarization and radiative transfer modeling. Astron. Astrophys. 378, 627–634 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Hanle, W. Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Phys. 30, 93–105 (1924)

    Article  ADS  CAS  Google Scholar 

  15. Trujillo Bueno, J. in Advanced Solar Polarimetry: Theory, Observations and Instrumentation (ed. Sigwarth, M.) 161–195 (ASP Conf. Ser. Vol. 236, Astronomical Society of the Pacific, San Francisco, 2001)

    Google Scholar 

  16. Stenflo, J. O. The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere. Sol. Phys 80, 209–226 (1982)

    Article  ADS  CAS  Google Scholar 

  17. Shchukina, N. & Trujillo Bueno, J. in Solar Polarization 3 (eds Trujillo Bueno, J. & Sánchez Almeida, J.) 336–343 (ASP Conf. Ser. Vol. 307, Astronomical Society of the Pacific, San Francisco, 2003)

    Google Scholar 

  18. Asplund, M., Nordlund, Å., Trampedach, R., Allende Prieto, C. & Stein, R. F. Line formation in solar granulation. I. Fe line shapes, shifts and asymmetries. Astron. Astrophys. 359, 729–742 (2000)

    ADS  CAS  Google Scholar 

  19. Cattaneo, F. On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42 (1999)

    Article  ADS  Google Scholar 

  20. Stein, R. F. & Nordlund, Å. in Modelling of Stellar Atmospheres (eds Piskunov, N. E., Weiss, W. W. & Gray, D. F.), 169–180 (ASP Conf. Ser. Vol. IAU 210, Astronomical Society of the Pacific, San Francisco, 2003)

    Google Scholar 

  21. Socas-Navarro, H. & Sánchez Almeida, J. Magnetic fields in the quiet Sun: observational discrepancies and unresolved structure. Astrophys. J. 593, 581–586 (2003)

    Article  ADS  Google Scholar 

  22. Sánchez Almeida, J., Emonet, T. & Cattaneo, F. Polarization of photospheric lines from turbulent dynamo simulations. Astrophys J. 585, 536–552 (2003)

    Article  ADS  Google Scholar 

  23. Trujillo Bueno, J., Casini, R., Landolfi, M. & Landi Degl'Innocenti, E. The physical origin of the scattering polarization of the Na i D lines in the presence of weak magnetic fields. Astrophys J. 566, L53–L57 (2002)

    Article  ADS  Google Scholar 

  24. Landi Degl'Innocenti, E. Evidence against turbulent and canopy-like magnetic fields in the solar chromosphere. Nature 392, 256–258 (1998)

    Article  ADS  Google Scholar 

  25. Stenflo, J. O. in Solar Polarization 3 (eds Trujillo Bueno, J. & Sánchez Almeida, J.) 385–398 (ASP Conf. Ser. Vol. 307, Astronomical Society of the Pacific, San Francisco, 2003)

    Google Scholar 

  26. Anderson, L. S. & Athay, R. G. Model solar chromosphere with prescribed heating. Astrophys. J. 346, 1010–1018 (1989)

    Article  ADS  CAS  Google Scholar 

  27. Priest, E. & Forbes, T. Magnetic Reconnection: MHD Theory and Applications (Cambridge Univ. Press, New York, 2000)

    Book  Google Scholar 

  28. Landi Degl'Innocenti, E. Polarization in spectral lines: I. A unifying theoretical approach. Sol. Phys. 85, 3–31 (1983)

    Article  ADS  Google Scholar 

  29. Trujillo Bueno, J. in Stellar Atmosphere Modeling (eds Hubeny, I., Mihalas, D. & Werner, K.) 551–582 (Asp Conf. Ser. Vol. 288, Astronomical Society of the Pacific, San Francisco, 2003)

    Google Scholar 

  30. Trujillo Bueno, J. in Solar Polarization 3 (eds Trujillo Bueno, J. & Sánchez Almeida, J.) 407–424 (ASP Conf. Ser. Vol. 307, Astronomical Society of the Pacific, San Francisco, 2003)

    Google Scholar 

Download references

Acknowledgements

We thank F. Kneer, E. Landi Degl'Innocenti and F. Moreno-Insertis for scientific discussions. We are also grateful to P. Fabiani Bendicho for help with the numerical solution of the 3D radiative transfer equation. This research was supported by the Spanish Plan Nacional de Astronomía y Astrofísica and by the European Commission via the INTAS programme and the Solar Magnetism Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Trujillo Bueno.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bueno, J., Shchukina, N. & Ramos, A. A substantial amount of hidden magnetic energy in the quiet Sun. Nature 430, 326–329 (2004). https://doi.org/10.1038/nature02669

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02669

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing