Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A high abundance of massive galaxies 3–6 billion years after the Big Bang

Abstract

Hierarchical galaxy formation is the model whereby massive galaxies form from an assembly of smaller units1. The most massive objects therefore form last. The model succeeds in describing the clustering of galaxies2, but the evolutionary history of massive galaxies, as revealed by their visible stars and gas, is not accurately predicted. Near-infrared observations (which allow us to measure the stellar masses of high-redshift galaxies3) and deep multi-colour images indicate that a large fraction of the stars in massive galaxies form in the first 5 Gyr (refs 4–7), but uncertainties remain owing to the lack of spectra to confirm the redshifts (which are estimated from the colours) and the role of obscuration by dust. Here we report the results of a spectroscopic redshift survey that probes the most massive and quiescent galaxies back to an era only 3 Gyr after the Big Bang. We find that at least two-thirds of massive galaxies have appeared since this era, but also that a significant fraction of them are already in place in the early Universe.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stellar mass–redshift distribution for our galaxies.
Figure 2: Colour–redshift distribution for our galaxies.
Figure 3: Mass density in stars versus redshift.

References

  1. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)

    Article  ADS  CAS  Google Scholar 

  2. Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003)

    Article  ADS  Google Scholar 

  3. Brinchmann, J. & Ellis, R. S. The mass assembly and star formation characteristics of field galaxies of known morphology. Astrophys. J. 536, L77–L80 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Dickinson, M., Papovich, C., Ferguson, H. C. & Budavári, T. The evolution of the global stellar mass density at 0 < z < 3. Astrophys. J. 587, 25–40 (2003)

    Article  ADS  Google Scholar 

  5. Fontana, A. et al. The assembly of massive galaxies from near-infrared observations of the Hubble Deep Field-South. Astrophys. J. 594, L9–L12 (2003)

    Article  ADS  Google Scholar 

  6. Drory, N. et al. The Munich Near-Infrared Cluster Survey: Number density evolution of massive field galaxies to z 1.2 as derived from the K-band-selected survey. Astrophys. J. 562, L111–L114 (2001)

    Article  ADS  Google Scholar 

  7. Franx, M. et al. A significant population of red, near-infrared-selected high-redshift galaxies. Astrophys. J. 587, L79–L82 (2003)

    Article  ADS  Google Scholar 

  8. Madau, P. et al. High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z 4. Mon. Not. R. Astron. Soc. 283, 1388–1404 (1996)

    Article  ADS  Google Scholar 

  9. Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M. & Pettini, M. Lyman-break galaxies at z 4 and the evolution of the ultraviolet luminosity density at high redshift. Astrophys. J. 519, 1–17 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Lotz, J. M., Ferguson, H. C. & Bohlin, R. C. Mid-ultraviolet determination of elliptical galaxy abundances and ages. Astrophys. J. 532, 830–844 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Vogt, N. P. et al. Optical rotation curves of distant field galaxies: Sub-L* systems. Astrophys. J 479, L121–L124 (1997)

    Article  ADS  Google Scholar 

  12. Gebhardt, K. et al. The DEEP Groth strip Survey. IX. Evolution of the fundamental plane of field galaxies. Astrophys. J. 597, 239–262 (2003)

    Article  ADS  Google Scholar 

  13. Kauffmann, G., Colberg, J. M., Diaferio, A. & White, S. D. M. Clustering of galaxies in a hierarchical universe - II. Evolution to high redshift. Mon. Not. R. Astron. Soc. 307, 529–536 (1999)

    Article  ADS  Google Scholar 

  14. Baugh, C. M., Benson, A. J., Cole, S., Frenk, C. S. & Lacey, C. in The Mass of Galaxies at Low and High Redshift (eds Bender, R. & Renzini, A.) 91–96 (ESO Astrophysics Symposia, Berlin, Springer, 2003)

    Book  Google Scholar 

  15. Rix, H. & Rieke, M. J. Tracing the stellar mass in M51. Astrophys. J. 418, 123–134 (1993)

    Article  ADS  Google Scholar 

  16. Bell, E. F., McIntosh, D. H., Katz, N. & Weinberg, M. D. The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. Astrophys. J. Suppl. 149, 289–312 (2003)

    Article  ADS  Google Scholar 

  17. Abraham, R. G. et al. The Gemini Deep Deep Survey: I. Introduction to the survey, catalogs and composite spectra. Astron. J. 127, 2455–2483 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Savaglio, S. et al. The Gemini Deep Deep Survey. II. Metals in star-forming galaxies at redshift 1.3 < z < 2. Astrophys. J. 602, 51–65 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Schmidt, M. Space distribution and luminosity functions of quasi-stellar radio sources. Astrophys. J. 151, 393–409 (1968)

    Article  ADS  Google Scholar 

  20. Cole, S. et al. The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions. Mon. Not. R. Astron. Soc. 326, 255–273 (2001)

    Article  ADS  Google Scholar 

  21. Fioc, F. & Rocca-Volmerange, B. PEGASE: a UV to NIR spectral evolution model of galaxies. Application to the calibration of bright galaxy counts. Astron. Astrophys. 326, 950–962 (1997)

    ADS  Google Scholar 

  22. Granato, G. L. et al. The infrared side of galaxy formation. I. The local universe in the semianalytical framework. Astrophys. J. 542, 710–730 (2000)

    Article  ADS  Google Scholar 

  23. Sheth, R. K. & Tormen, G. Large-scale bias and the peak background split. Mon. Not. R. Astron. Soc. 308, 119–126 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Somerville, R. S., Primack, J. R. & Faber, S. M. The nature of high-redshift galaxies. Mon. Not. R. Astron. Soc. 320, 504–528 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Somerville, R. S. et al. The redshift distribution of near-infrared-selected galaxies in the Great Observatories Origins Deep Survey as a test of galaxy formation scenarios. Astrophys. J. 600, L135–L138 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Stanford, S. A. et al. The evolution of early-type field galaxies selected from a NICMOS map of the Hubble Deep Field North. Astron. J. 127, 131–155 (2004)

    Article  ADS  Google Scholar 

  27. Baldry, I. K. & Glazebrook, K. Constraints on a universal stellar initial mass function from ultraviolet to near-infrared galaxy luminosity densities. Astrophys. J. 593, 258–271 (2003)

    Article  ADS  Google Scholar 

  28. Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)

    Article  ADS  Google Scholar 

  29. Kennicutt, R. C. The rate of star formation in normal disk galaxies. Astrophys. J. 272, 54–67 (1983)

    Article  ADS  CAS  Google Scholar 

  30. Coleman, G. D., Wu, C.-C. & Weedman, D. W. Colors and magnitudes predicted for high redshift galaxies. Astrophys. J. Suppl. 43(Suppl.), 393–416 (1980)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on observations obtained at the Gemini Observatory, which is operated by AURA under a co-operative agreement with the NSF on behalf of the Gemini partnership: NSF (US), PPARC (UK), NRC (Canada), CONICYT (Chile), ARC (Australia), CNPq (Brazil) and CONICET (Argentina); it is also based on observations made at the Las Campanas Observatory of the Carnegie Institution of Washington. K.G. and S.S. acknowledge funding from the David and Lucille Packard Foundation; S.S. is on leave of absence from the Osservatorio Astronomica di Roma, Italy. R.A. acknowledges funding from NSERC and from the Government of Ontario through a Premier's Research Excellence award. H.-W.C. acknowledges support by NASA through a Hubble Fellowship grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Glazebrook.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazebrook, K., Abraham, R., McCarthy, P. et al. A high abundance of massive galaxies 3–6 billion years after the Big Bang. Nature 430, 181–184 (2004). https://doi.org/10.1038/nature02667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02667

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing