Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Local sleep and learning

Abstract

Human sleep is a global state whose functions remain unclear. During much of sleep, cortical neurons undergo slow oscillations in membrane potential, which appear in electroencephalograms as slow wave activity (SWA) of <4 Hz1. The amount of SWA is homeostatically regulated, increasing after wakefulness and returning to baseline during sleep2. It has been suggested that SWA homeostasis may reflect synaptic changes underlying a cellular need for sleep3. If this were so, inducing local synaptic changes should induce local SWA changes, and these should benefit neural function. Here we show that sleep homeostasis indeed has a local component, which can be triggered by a learning task involving specific brain regions. Furthermore, we show that the local increase in SWA after learning correlates with improved performance of the task after sleep. Thus, sleep homeostasis can be induced on a local level and can benefit performance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Rotation adaptation.
Figure 2: Local SWA homeostasis during sleep after rotation adaptation.
Figure 3: Frequency specificity, time course and anatomical localization of local SWA homeostasis.
Figure 4: Enhancement of performance after sleep and its relationship to SWA.

References

  1. 1

    Steriade, M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243–276 (2000)

    CAS  Article  Google Scholar 

  2. 2

    Borbély, A. A. & Achermann, P. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 377–390 (W. B. Saunders, Philadelphia, 2000)

    Google Scholar 

  3. 3

    Tononi, G. & Cirelli, C. Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150 (2003)

    Article  Google Scholar 

  4. 4

    Ghilardi, M. F. et al. Patterns of regional brain activation associated with different forms of motor learning. Brain Res. 871, 127–145 (2000)

    CAS  Article  Google Scholar 

  5. 5

    Ghilardi, M. F., Eidelberg, D., Silvestri, G. & Ghez, C. The differential effect of PD and normal aging on early explicit sequence learning. Neurology 60, 1313–1319 (2003)

    Article  Google Scholar 

  6. 6

    Finelli, L. A., Borbély, A. A. & Achermann, P. Functional topography of the human nonREM sleep electroencephalogram. Eur. J. Neurosci. 13, 2282–2290 (2001)

    CAS  Article  Google Scholar 

  7. 7

    Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2001)

    Article  Google Scholar 

  8. 8

    Cohen, Y. E. & Andersen, R. A. A common reference frame for movement plans in the posterior parietal cortex. Nature Rev. Neurosci. 3, 553–562 (2002)

    CAS  Article  Google Scholar 

  9. 9

    Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 (1993)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Mednick, S. C. et al. The restorative effect of naps on perceptual deterioration. Nature Neurosci. 5, 677–681 (2002)

    CAS  Article  Google Scholar 

  11. 11

    Stickgold, R., James, L. & Hobson, J. A. Visual discrimination learning requires sleep after training. Nature Neurosci. 3, 1237–1238 (2000)

    CAS  Article  Google Scholar 

  12. 12

    Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A. & Stickgold, R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35, 205–211 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Fenn, K. M., Nusbaum, H. C. & Margoliash, D. Consolidation during sleep of perceptual learning of spoken language. Nature 425, 614–616 (2003)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Maquet, P., Schwartz, S., Passingham, R. & Frith, C. Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. J. Neurosci. 23, 1432–1440 (2003)

    CAS  Article  Google Scholar 

  15. 15

    Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J. & Sagi, D. Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265, 679–682 (1994)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Fischer, S., Hallschmid, M., Elsner, A. L. & Born, J. Sleep forms memory for finger skills. Proc. Natl Acad. Sci. USA 99, 11987–11991 (2002)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Gais, S., Plihal, W., Wagner, U. & Born, J. Early sleep triggers memory for early visual discrimination skills. Nature Neurosci. 3, 1335–1339 (2000)

    CAS  Article  Google Scholar 

  18. 18

    Smith, C. Sleep states and memory processes. Behav. Brain Res. 69, 137–145 (1995)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Vyazovskiy, V., Borbély, A. A. & Tobler, I. Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J. Sleep Res. 9, 367–371 (2000)

    CAS  Article  Google Scholar 

  20. 20

    Kattler, H., Dijk, D.-J. & Borbély, A. A. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J. Sleep Res. 3, 159–164 (1994)

    CAS  Article  Google Scholar 

  21. 21

    Huber, R., Deboer, T. & Tobler, I. Topography of EEG dynamics after sleep deprivation in mice. J. Neurophysiol. 84, 1888–1893 (2000)

    CAS  Article  Google Scholar 

  22. 22

    Krueger, J. M. & Obál, F. Jr A neuronal group theory of sleep function. J. Sleep Res. 2, 63–69 (1993)

    CAS  Article  Google Scholar 

  23. 23

    Tononi, G. & Cirelli, C. Some considerations on sleep and neural plasticity. Arch. Ital. Biol. 139, 221–241 (2001)

    CAS  PubMed  Google Scholar 

  24. 24

    Cirelli, C., Gutierrez, C. M. & Tononi, G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41, 35–43 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Steriade, M. & Timofeev, I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37, 563–576 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Maquet, P. The role of sleep in learning and memory. Science 294, 1048–1052 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Hoffman, K. L. & McNaughton, B. L. Sleep on it: cortical reorganization after-the-fact. Trends Neurosci. 25, 1–2 (2001)

    Article  Google Scholar 

  28. 28

    Stickgold, R., Hobson, J. A., Fosse, R. & Fosse, M. Sleep, learning, and dreams: off-line memory reprocessing. Science 294, 1052–1057 (2001)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Benington, J. H. & Frank, M. G. Cellular and molecular connections between sleep and synaptic plasticity. Prog. Neurobiol. 69, 71–101 (2003)

    CAS  Article  Google Scholar 

  30. 30

    Walker, M. P. A refined model of sleep and the time course of memory formation. Behav. Brain Sci. (in the press)

Download references

Acknowledgements

We thank C. Cirelli, F. Ferrarelli and T. Shakhnovich for their help, colleagues at WISPIC and Columbia for their comments on the manuscript, and R. Davidson and A. Alexander at the Keck Center for support with EEG and MRI facilities. This work was supported by grants from the Swiss Foundation for Fellowships in Biology and Medicine to R.H., from the NINDS to M.F.G, from the National Sleep Foundation to M.M. and from the NIMH to G.T.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giulio Tononi.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huber, R., Felice Ghilardi, M., Massimini, M. et al. Local sleep and learning. Nature 430, 78–81 (2004). https://doi.org/10.1038/nature02663

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing