Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microbialite resurgence after the Late Ordovician extinction

Abstract

Microbialites, including biogenic stromatolites, thrombolites and dendrolites, were formed by various microbial mats that trapped and bound sediments or formed the locus of mineral precipitation1. Microbialites were common and diverse during the Proterozoic2,3,4, but declined in abundance and morphological diversity when multicellular life diversified during the Cambrian Radiation. A second decline occurred during the Ordovician Radiation of marine animals, and from then until the present microbialites have been confined largely to high-stress environments where multicellular organisms are rare. The microbialite declines in the Phanerozoic are attributed to disruption of the mats by animals2,5,6. A resurgence of stromatolite abundance and size during reduced animal diversity after the Permian extinction7 has been documented anecdotally. Here we show, with statistical support, that a microbialite resurgence also occurred after the Late Ordovician extinction event in western North America. The resurgences were associated with loss of mat-inhibiting animals, providing insights into shallow-water community structures after extinction events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Palaeogeographic map of lowest Silurian (sequence S1).
Figure 2: Microbialites from sequence S2 in the southern Lakeside Mountains, Utah.
Figure 3: Bootstrapping test to determine the number of large microbial domes expected in sequences S1 and S2.

References

  1. 1

    Riding, R. Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47(Suppl. 1), 179–214 (2000)

    CAS  Article  Google Scholar 

  2. 2

    Awramik, S. M. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science 216, 171–173 (1982)

    Article  Google Scholar 

  3. 3

    Awramik, S. M. & Sprinkle, J. Proterozoic stromatolites: the first marine evolutionary biota. Hist. Biol. 13, 241–253 (1999)

    Article  Google Scholar 

  4. 4

    Grotzinger, J. P. & Knoll, A. H. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Ann. Rev. Earth Planet. Sci. 27, 313–358 (1999)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Garrett, P. Phanerozoic stromatolites: noncompetitive ecologic restriction by grazing and burrowing animals. Science 169, 171–173 (1970)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Walter, M. R. & Heys, G. R. Links between the rise of Metazoa and the decline of stromatolites. Precambr. Res. 29, 149–174 (1985)

    ADS  Article  Google Scholar 

  7. 7

    Schubert, J. K. & Bottjer, D. J. Aftermath of the Permian–Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the western USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 116, 1–39 (1995)

    Article  Google Scholar 

  8. 8

    Harris, M. T. & Sheehan, P. M. in Paleozoic Sequence Stratigraphy: Views from the North American Craton Special Paper 306 (eds Witzke, B. J., Ludvigson, G. A. & Day, J. E.) 161–176 (Geol. Soc. Am., Boulder, CO, 1996)

    Book  Google Scholar 

  9. 9

    Harris, M. T. & Sheehan, P. M. in Silurian Cycles: Linking Dynamic Stratigraphy with Atmospheric and Oceanic Changes Bulletin 491 (eds Landing, E. & Johnson, M. E.) 51–61 (New York State Museum, Albany, NY, 1998)

    Google Scholar 

  10. 10

    Sheehan, P. M. The Late Ordovician mass extinction. Ann. Rev. Earth Planet. Sci. 29, 331–364 (2001)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Sheehan, P. M. & Harris, M. T. in Early Paleozoic Biochronology of the Great Basin, Western United States Professional Paper 1579C (ed. Taylor, M. E.) 85–115 (US Geol. Surv., Washington DC, 1997)

    Google Scholar 

  12. 12

    Raup, D. M. & Sepkoski, J. J. Jr Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Brenchley, P. J. et al. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22, 295–298 (1994)

    ADS  Article  Google Scholar 

  14. 14

    Siegel, S. Nonparametric Statistics for the Behavioral Sciences (McGraw-Hill, New York, 1956)

    MATH  Google Scholar 

  15. 15

    Sepkoski, J. J. Jr Biodiversity: past, present, and future. J. Paleontol. 71, 533–539 (1997)

    Article  Google Scholar 

  16. 16

    Bottjer, D. J., Droser, M. L., Sheehan, P. M. & McGhee, G. R. Jr in Evolutionary Paleoecology (eds Allmon, W. D. & Bottjer, D. J.) 35–61 (Columbia Univ. Press, New York, 2001)

    Google Scholar 

  17. 17

    Jablonski, D. & Sepkoski, J. J. Jr Paleobiology, community ecology, and scales of ecological pattern. Ecology 77, 1367–1378 (1996)

    CAS  Article  Google Scholar 

  18. 18

    Grotzinger, J. P. Geochemical models for proterozoic stromatolite decline. Am. J. Sci. 290A, 80–103 (1990)

    Google Scholar 

  19. 19

    Webby, B. D., Paris, F. & Droser, M. L. (eds) The Ecology of the Cambrian Radiation (Columbia Univ. Press, New York, 2001)

  20. 20

    Bottjer, D. J., Schubert, J. K. & Droser, M. L. in Biotic Recovery from Mass Extinction Events. Special Pub 102 (ed. Hart, M. B.) 1–13 (Geol. Soc. London, London, 1996)

    Google Scholar 

  21. 21

    Wood, R. Reef Evolution 414 (Oxford Univ. Press, Oxford, 1999)

    Google Scholar 

  22. 22

    Browne, K. M., Golubic, S. & Lee, S.-J. in Microbial Sediments (eds Riding, R. E. & Awramik, S. M.) 233–249 (Springer, Berlin, 2000)

    Book  Google Scholar 

  23. 23

    Pope, M. C., Grotzinger, J. P. & Schreiber, B. C. Evaporitic subtidal stromatolites produced by in situ precipitation: textures, facies associations, and temporal significance. J. Sedim. Res. 70, 1139–1151 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Webby, B. D., Paris, F. & Droser, M. L. (eds) The Great Ordovician Biodiversification Event (Columbia Univ. Press, New York, 2004)

  25. 25

    Sheehan, P. M., Coorough, P. J. & Fastovsky, D. E. in The Cretaceous–Tertiary Event and Other Catastrophes in Earth History. Special Paper 307 (eds Ryder, G., Fastovsky, D. & Gartner, S.) 477–489 (Geol. Soc. Am., Boulder, CO, 1996)

    Google Scholar 

  26. 26

    Lehrmann, D. J., Wei, J. & Enos, P. Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjiang Basin, South China. J. Sedim. Res. 68, 311–326 (1998)

    CAS  Article  Google Scholar 

  27. 27

    Kershaw, S., Zhang, T. & Lan, G. A microbialite crust at the Permian–Triassic boundary in south China and its palaeoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 146, 1–18 (1999)

    Article  Google Scholar 

  28. 28

    Stephens, N. P. & Sumner, D. Y. Famennian microbial reef facies, Napier and Oscar Ranges, Canning Basin, western Australia. Sedimentology 50, 1283–1302 (2003)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Martin, J. M. & Braga, J. C. Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean. Sedim. Geol. 90, 257–268 (1994)

    ADS  Article  Google Scholar 

  30. 30

    Watson R. T. & Core Writing Team (eds) 3rd Assessment Report of the Inter-Governmental Panel on Climate Change. Climate Change 2001: Synthesis Report [online] 〈http://www.ipcc.ch/pub/syreng.htm〉 (2001)

Download references

Acknowledgements

J. Awe was an astute volunteer during four summers of fieldwork; and C. Morse provided statistical advice. The research was supported by National Science Foundation grants to P.M.S. and M.E.H. This is a contribution to IGCP Project 503.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter M. Sheehan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheehan, P., Harris, M. Microbialite resurgence after the Late Ordovician extinction. Nature 430, 75–78 (2004). https://doi.org/10.1038/nature02654

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing