Ancestral echinoderms from the Chengjiang deposits of China

Article metrics

Abstract

Deuterostomes are a remarkably diverse super-phylum, including not only the chordates (to which we belong) but groups as disparate as the echinoderms and the hemichordates. The phylogeny of deuterostomes is now achieving some degree of stability, especially on account of new molecular data, but this leaves as conjectural the appearance of extinct intermediate forms that would throw light on the sequence of evolutionary events leading to the extant groups. Such data can be supplied from the fossil record, notably those deposits with exceptional soft-part preservation. Excavations near Kunming in southwestern China have revealed a variety of remarkable early deuterostomes, including the vetulicolians and yunnanozoans. Here we describe a new group, the vetulocystids. They appear to have similarities not only to the vetulicolians but also to the homalozoans, a bizarre group of primitive echinoderms whose phylogenetic position has been highly controversial.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Two specimens of Vetulocystis catenata from Anning, Kunming, Yunnan.
Figure 2: Four specimens of D. jianshanensis from Haikou, Kunming, Yunnan.
Figure 3: Form A (ac, e, f) and form B (d, g), both from Haikou, Kunming, Yunnan.
Figure 4: Phylogeny of early deuterostomes.

References

  1. 1

    Bromham, L. D. & Degnan, B. M. Hemichordate and deuterostome evolution: robust molecular phylogenetic support for a hemichordate plus echinoderm clade. Evol. Dev. 1, 166–171 (1999)

  2. 2

    Winchell, C. J., Sullivan, J., Cameron, C. B., Swalla, B. J. & Mallatt, J. Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol. Biol. Evol. 19, 762–776 (2002)

  3. 3

    Sly, B. J., Hazel, J. C., Popodi, E. M. & Raff, R. A. Patterns of gene expression in the developing adult sea urchin central nervous system reveal multiple domains and deep-seated neural pentamery. Evol. Dev. 4, 189–204 (2002)

  4. 4

    Gee, H. Before the Backbone: Views on the Origin of Vertebrates (Chapman & Hall, London, 1996)

  5. 5

    Wray, G. A. & Lowe, C. J. Developmental regulatory genes and echinoderm evolution. Syst. Biol. 49, 28–51 (2000)

  6. 6

    Lefebvre, B. Functional morphology of stylophoran echinoderms. Palaeontology 46, 511–555 (2003)

  7. 7

    Parsley, R. L. in Echinoderm Research 1998 (eds Candia Carnevali, M. D. & Bonasoro, F.) 369–375 (Balkema, Rotterdam, 1999)

  8. 8

    Domínguez-Alonso, P. in Echinoderm Research 1998 (eds Candia Carnevali, M. D. & Bonasoro, F.) 263–268 (Balkema, Rotterdam, 1999)

  9. 9

    Jefferies, R. P. S. A defence of the calcichordates. Lethaia 30, 1–10 (1997)

  10. 10

    Domínguez, P., Jacobson, A. G. & Jefferies, R. P. S. Paired gill slits in a fossil with a calcite skeleton. Nature 417, 841–844 (2002)

  11. 11

    Hou, X.-G., Bergström, J., Wang, H.-F., Feng, X.-H. & Chen, A.-L. The Chengjiang Fauna: Exceptionally Well-Preserved Animals from 530 Million Years Ago (Yunnan Science and Technology Press, Kunming, 1999)

  12. 12

    Zhang, X.-L., Shu, D.-G., Li, Y. & Han, J. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. J. Geol. Soc. Lond. 158, 211–218 (2001)

  13. 13

    Shu, D.-G. et al. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature 414, 419–424 (2001)

  14. 14

    Chen, A.-L., Feng, H.-Z., Zhu, M.-Y., Ma, D.-S. & Li, M. A new vetulicolian from the early Cambrian Chengjiang fauna in Yunnan of China. Acta Geol. Sinica 77, 281–287 (2003)

  15. 15

    Lacalli, T. C. Vetulicolians – are they deuterostomes? chordates? Bioessays 24, 208–211 (2002)

  16. 16

    Shu, D.-G. et al. A new species of yunnanozoan with implications for deuterostome evolution. Science 299, 1380–1384 (2003)

  17. 17

    Mallatt, J. & Chen, J.-Y. Fossil sister group of craniates: Predicted and found. J. Morphol. 258, 1–31 (2003)

  18. 18

    Shu, D.-G., Chen, L. & Zhang, Z.-L. An early Cambrian tunicate from China. Nature 411, 472–473 (2001)

  19. 19

    Chen, J.-Y. et al. The first tunicate from the early Cambrian of South China. Proc. Natl Acad. Sci. USA 100, 8314–8318 (2003)

  20. 20

    Shu, D.-G. et al. Head and backbone of the early Cambrian vertebrate Haikouichthys. Nature 421, 526–529 (2003)

  21. 21

    Shu, D.-G. A paleontological perspective of vertebrate origin. Chinese Sci. Bull. 48, 725–735 (2003)

  22. 22

    Chen, J.-Y. & Zhou, G.-Q. Biology of the Chengjiang fauna. Bull. Natl Mus. Nat. Sci. 10, 11–105 (1997)

  23. 23

    Babcock, L. E. & Zhang, W.-T. Stratigraphy, paleontology, and depositional setting of the Chengjiang Lagerstätte (Lower Cambrian), Yunnan, China. Palaeoworld 13, 66–86 (2001)

  24. 24

    Halanych, K. M. The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Mol. Phyl. Evol. 4, 72–76 (1995)

  25. 25

    Gee, H. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 1–14 (Taylor & Francis, London, 2001)

  26. 26

    Ubaghs, G. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 2 (ed. Moore, R. C.) S495–S565 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

  27. 27

    Jefferies, R. P. S. The Ancestry of the Vertebrates (Cambridge Univ. Press and British Natural History Museum, London, 1986)

  28. 28

    Parsley, R. L. in Echinoderms Through Time (eds David, D., Guille, A., Féral, J.-P. & Roux, M.) 167–172 (Balkema, Rotterdam, 1994)

  29. 29

    Beaver, H. H. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 2 (ed. Moore, R. C.) S300–S350 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

  30. 30

    Caster, K. E. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 2 (ed. Moore, R. C.) S581–S627 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

  31. 31

    Daley, P. E. J. Anatomy, locomotion and ontogeny of the solute Castericystis vali from the Middle Cambrian of Utah. Geobios 28, 585–615 (1995)

  32. 32

    Sprinkle, J. & Robison, R. A. in Treatise on Invertebrate Paleontology Part T, Echinodermata 2 Vol. 3 (eds Moore, R. C. & Teichert, C.) T998–T1002 (Geological Society of America and Univ. Kansas, Boulder and Lawrence, 1978)

  33. 33

    Kesling, R. V. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 1 (ed. Moore, R. C.) S85–S267 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

  34. 34

    Ubaghs, G. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 2 (ed. Moore, R. C.) S455–S495 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

  35. 35

    Domínguez, P., Gil, D. & Torres, S. in Echinoderm Research 1998 (eds Candia Carnevali, M. D. & Bonasoro, F.) 269–273 (Balkema, Rotterdam, 1999)

  36. 36

    van Name, W. G. The North and South American ascidians. Bull. Am. Mus. Nat. Hist. 84, 1–476 (1945)

  37. 37

    David, B., Lefebvre, B., Mooi, R. & Parsley, R. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology 26, 529–555 (2000)

  38. 38

    Jefferies, R. P. S., Brown, N. A. & Daley, P. E. J. The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry. Acta Zool. 77, 101–122 (1996)

  39. 39

    Daley, P. E. J. The anatomy of the solute Girvanicystis batheri (?Chordata) from the Upper Ordovician of Scotland and a new species of Girvanicystis from the Upper Ordovician of South Wales. Zool. J. Linn. Soc. 105, 353–375 (1992)

  40. 40

    Daley, P. E. J. The first solute which is attached as an adult: a mid-Cambrian fossil from Utah with echinoderm and chordate affinities. Zool. J. Linn. Soc. 117, 405–440 (1996)

  41. 41

    Shu, D.-G., Zhang, X. & Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380, 428–430 (1996)

  42. 42

    Jollie, M. What are the “Calcichordata”? and the larger question of the origin of chordates. Zool. J. Linn. Soc. 75, 167–188 (1982)

  43. 43

    Holland, L. Z., Kene, M., Williams, N. A. & Holland, N. D. Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124, 1723–1732 (1997)

  44. 44

    Cameron, C. B. Particle retention and flow in the pharynx of the enteropneust worm Harrimania planktophilus: the filter-feeding pharynx may have evolved before the chordates. Biol. Bull. 202, 192–200 (2002)

  45. 45

    Smith, M. P., Sansom, I. J. & Cochrane, K. D. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 67–84 (Taylor & Francis, London, 2001)

Download references

Acknowledgements

Supported by the Natural Science Foundation of China, the Ministry of Science and Technology of China (D.-G.S., J.H., Z.-F.Z., J.-N.L.), The Royal Society, St John's College, Cambridge and Cowper Reed Fund (S.C.M.). We thank M.-R. Cheng, Z.-Q. Luo, S. Last and S. Capon for technical assistance, and J.-P. Zhai, Y.-B. Ji and H.-X. Guo for help in fieldwork.

Author information

Correspondence to D.-G. Shu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.