Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ancestral echinoderms from the Chengjiang deposits of China

Abstract

Deuterostomes are a remarkably diverse super-phylum, including not only the chordates (to which we belong) but groups as disparate as the echinoderms and the hemichordates. The phylogeny of deuterostomes is now achieving some degree of stability, especially on account of new molecular data, but this leaves as conjectural the appearance of extinct intermediate forms that would throw light on the sequence of evolutionary events leading to the extant groups. Such data can be supplied from the fossil record, notably those deposits with exceptional soft-part preservation. Excavations near Kunming in southwestern China have revealed a variety of remarkable early deuterostomes, including the vetulicolians and yunnanozoans. Here we describe a new group, the vetulocystids. They appear to have similarities not only to the vetulicolians but also to the homalozoans, a bizarre group of primitive echinoderms whose phylogenetic position has been highly controversial.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two specimens of Vetulocystis catenata from Anning, Kunming, Yunnan.
Figure 2: Four specimens of D. jianshanensis from Haikou, Kunming, Yunnan.
Figure 3: Form A (ac, e, f) and form B (d, g), both from Haikou, Kunming, Yunnan.
Figure 4: Phylogeny of early deuterostomes.

Similar content being viewed by others

References

  1. Bromham, L. D. & Degnan, B. M. Hemichordate and deuterostome evolution: robust molecular phylogenetic support for a hemichordate plus echinoderm clade. Evol. Dev. 1, 166–171 (1999)

    Article  CAS  Google Scholar 

  2. Winchell, C. J., Sullivan, J., Cameron, C. B., Swalla, B. J. & Mallatt, J. Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol. Biol. Evol. 19, 762–776 (2002)

    Article  CAS  Google Scholar 

  3. Sly, B. J., Hazel, J. C., Popodi, E. M. & Raff, R. A. Patterns of gene expression in the developing adult sea urchin central nervous system reveal multiple domains and deep-seated neural pentamery. Evol. Dev. 4, 189–204 (2002)

    Article  CAS  Google Scholar 

  4. Gee, H. Before the Backbone: Views on the Origin of Vertebrates (Chapman & Hall, London, 1996)

    Google Scholar 

  5. Wray, G. A. & Lowe, C. J. Developmental regulatory genes and echinoderm evolution. Syst. Biol. 49, 28–51 (2000)

    Article  CAS  Google Scholar 

  6. Lefebvre, B. Functional morphology of stylophoran echinoderms. Palaeontology 46, 511–555 (2003)

    Article  Google Scholar 

  7. Parsley, R. L. in Echinoderm Research 1998 (eds Candia Carnevali, M. D. & Bonasoro, F.) 369–375 (Balkema, Rotterdam, 1999)

    Google Scholar 

  8. Domínguez-Alonso, P. in Echinoderm Research 1998 (eds Candia Carnevali, M. D. & Bonasoro, F.) 263–268 (Balkema, Rotterdam, 1999)

    Google Scholar 

  9. Jefferies, R. P. S. A defence of the calcichordates. Lethaia 30, 1–10 (1997)

    Article  Google Scholar 

  10. Domínguez, P., Jacobson, A. G. & Jefferies, R. P. S. Paired gill slits in a fossil with a calcite skeleton. Nature 417, 841–844 (2002)

    Article  ADS  Google Scholar 

  11. Hou, X.-G., Bergström, J., Wang, H.-F., Feng, X.-H. & Chen, A.-L. The Chengjiang Fauna: Exceptionally Well-Preserved Animals from 530 Million Years Ago (Yunnan Science and Technology Press, Kunming, 1999)

    Google Scholar 

  12. Zhang, X.-L., Shu, D.-G., Li, Y. & Han, J. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. J. Geol. Soc. Lond. 158, 211–218 (2001)

    Article  Google Scholar 

  13. Shu, D.-G. et al. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature 414, 419–424 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Chen, A.-L., Feng, H.-Z., Zhu, M.-Y., Ma, D.-S. & Li, M. A new vetulicolian from the early Cambrian Chengjiang fauna in Yunnan of China. Acta Geol. Sinica 77, 281–287 (2003)

    Article  Google Scholar 

  15. Lacalli, T. C. Vetulicolians – are they deuterostomes? chordates? Bioessays 24, 208–211 (2002)

    Article  Google Scholar 

  16. Shu, D.-G. et al. A new species of yunnanozoan with implications for deuterostome evolution. Science 299, 1380–1384 (2003)

    Article  CAS  Google Scholar 

  17. Mallatt, J. & Chen, J.-Y. Fossil sister group of craniates: Predicted and found. J. Morphol. 258, 1–31 (2003)

    Article  Google Scholar 

  18. Shu, D.-G., Chen, L. & Zhang, Z.-L. An early Cambrian tunicate from China. Nature 411, 472–473 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Chen, J.-Y. et al. The first tunicate from the early Cambrian of South China. Proc. Natl Acad. Sci. USA 100, 8314–8318 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Shu, D.-G. et al. Head and backbone of the early Cambrian vertebrate Haikouichthys. Nature 421, 526–529 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Shu, D.-G. A paleontological perspective of vertebrate origin. Chinese Sci. Bull. 48, 725–735 (2003)

    Article  ADS  Google Scholar 

  22. Chen, J.-Y. & Zhou, G.-Q. Biology of the Chengjiang fauna. Bull. Natl Mus. Nat. Sci. 10, 11–105 (1997)

    Google Scholar 

  23. Babcock, L. E. & Zhang, W.-T. Stratigraphy, paleontology, and depositional setting of the Chengjiang Lagerstätte (Lower Cambrian), Yunnan, China. Palaeoworld 13, 66–86 (2001)

    Google Scholar 

  24. Halanych, K. M. The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Mol. Phyl. Evol. 4, 72–76 (1995)

    Article  CAS  Google Scholar 

  25. Gee, H. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 1–14 (Taylor & Francis, London, 2001)

    Google Scholar 

  26. Ubaghs, G. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 2 (ed. Moore, R. C.) S495–S565 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

    Google Scholar 

  27. Jefferies, R. P. S. The Ancestry of the Vertebrates (Cambridge Univ. Press and British Natural History Museum, London, 1986)

    Google Scholar 

  28. Parsley, R. L. in Echinoderms Through Time (eds David, D., Guille, A., Féral, J.-P. & Roux, M.) 167–172 (Balkema, Rotterdam, 1994)

    Google Scholar 

  29. Beaver, H. H. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 2 (ed. Moore, R. C.) S300–S350 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

    Google Scholar 

  30. Caster, K. E. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 2 (ed. Moore, R. C.) S581–S627 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

    Google Scholar 

  31. Daley, P. E. J. Anatomy, locomotion and ontogeny of the solute Castericystis vali from the Middle Cambrian of Utah. Geobios 28, 585–615 (1995)

    Article  Google Scholar 

  32. Sprinkle, J. & Robison, R. A. in Treatise on Invertebrate Paleontology Part T, Echinodermata 2 Vol. 3 (eds Moore, R. C. & Teichert, C.) T998–T1002 (Geological Society of America and Univ. Kansas, Boulder and Lawrence, 1978)

    Google Scholar 

  33. Kesling, R. V. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 1 (ed. Moore, R. C.) S85–S267 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

    Google Scholar 

  34. Ubaghs, G. in Treatise on Invertebrate Paleontology Part S, Echinodermata 1, Homalozoa-Crinozoa (except Crinoidea) Vol. 2 (ed. Moore, R. C.) S455–S495 (Geological Society of America and Univ. Kansas, New York and Lawrence, 1967)

    Google Scholar 

  35. Domínguez, P., Gil, D. & Torres, S. in Echinoderm Research 1998 (eds Candia Carnevali, M. D. & Bonasoro, F.) 269–273 (Balkema, Rotterdam, 1999)

    Google Scholar 

  36. van Name, W. G. The North and South American ascidians. Bull. Am. Mus. Nat. Hist. 84, 1–476 (1945)

    Google Scholar 

  37. David, B., Lefebvre, B., Mooi, R. & Parsley, R. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology 26, 529–555 (2000)

    Article  Google Scholar 

  38. Jefferies, R. P. S., Brown, N. A. & Daley, P. E. J. The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry. Acta Zool. 77, 101–122 (1996)

    Article  Google Scholar 

  39. Daley, P. E. J. The anatomy of the solute Girvanicystis batheri (?Chordata) from the Upper Ordovician of Scotland and a new species of Girvanicystis from the Upper Ordovician of South Wales. Zool. J. Linn. Soc. 105, 353–375 (1992)

    Article  Google Scholar 

  40. Daley, P. E. J. The first solute which is attached as an adult: a mid-Cambrian fossil from Utah with echinoderm and chordate affinities. Zool. J. Linn. Soc. 117, 405–440 (1996)

    Article  Google Scholar 

  41. Shu, D.-G., Zhang, X. & Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380, 428–430 (1996)

    Article  ADS  CAS  Google Scholar 

  42. Jollie, M. What are the “Calcichordata”? and the larger question of the origin of chordates. Zool. J. Linn. Soc. 75, 167–188 (1982)

    Article  Google Scholar 

  43. Holland, L. Z., Kene, M., Williams, N. A. & Holland, N. D. Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124, 1723–1732 (1997)

    CAS  PubMed  Google Scholar 

  44. Cameron, C. B. Particle retention and flow in the pharynx of the enteropneust worm Harrimania planktophilus: the filter-feeding pharynx may have evolved before the chordates. Biol. Bull. 202, 192–200 (2002)

    Article  Google Scholar 

  45. Smith, M. P., Sansom, I. J. & Cochrane, K. D. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 67–84 (Taylor & Francis, London, 2001)

    Google Scholar 

Download references

Acknowledgements

Supported by the Natural Science Foundation of China, the Ministry of Science and Technology of China (D.-G.S., J.H., Z.-F.Z., J.-N.L.), The Royal Society, St John's College, Cambridge and Cowper Reed Fund (S.C.M.). We thank M.-R. Cheng, Z.-Q. Luo, S. Last and S. Capon for technical assistance, and J.-P. Zhai, Y.-B. Ji and H.-X. Guo for help in fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-G. Shu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, DG., Morris, S., Han, J. et al. Ancestral echinoderms from the Chengjiang deposits of China. Nature 430, 422–428 (2004). https://doi.org/10.1038/nature02648

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02648

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing