Letter | Published:

Experimental demonstration of five-photon entanglement and open-destination teleportation


Quantum-mechanical entanglement of three1,2 or four3,4 particles has been achieved experimentally, and has been used to demonstrate the extreme contradiction between quantum mechanics and local realism5,6. However, the realization of five-particle entanglement remains an experimental challenge. The ability to manipulate the entanglement of five or more particles is required7,8 for universal quantum error correction. Another key process in distributed quantum information processing9,10, similar to encoding and decoding, is a teleportation protocol11,12 that we term ‘open-destination’ teleportation. An unknown quantum state of a single particle is teleported onto a superposition of N particles; at a later stage, this teleported state can be read out (for further applications) at any of the N particles, by a projection measurement on the remaining particles. Here we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation (for N = 3). In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single-photon state. Our experimental methods can be used for investigations of measurement-based quantum computation9,10 and multi-party quantum communication13,14.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)

  2. 2

    Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000)

  3. 3

    Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000)

  4. 4

    Pan, J.-W., Daniell, M., Gasparoni, S., Weihs, G. & Zeilinger, A. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4439 (2001)

  5. 5

    Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum non-locality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 515–519 (2000)

  6. 6

    Zhao, Z. et al. Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 91, 180401 (2003)

  7. 7

    Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A. 54, 3824–3851 (1996)

  8. 8

    Laflamme, R., Miquel, C., Paz, J. P. & Zurek, W. H. Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996)

  9. 9

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

  10. 10

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

  11. 11

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 83, 3081–3084 (1993)

  12. 12

    Karlsson, A. & Bourennane, M. Quantum teleportation using three-photon entanglement. Phys. Rev. A 58, 4394–4400 (1998)

  13. 13

    Hillery, M., Buzek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A. 59, 1829–1834 (1999)

  14. 14

    Scarani, V. & Gisin, N. Quantum communication between N partners and Bell's inequalities. Phys. Rev. Lett. 87, 117901 (2001)

  15. 15

    Zeilinger, A., Horne, M. A., Weinfurter, H. & Zukowski, M. Three-particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031–3034 (1997)

  16. 16

    Rarity, J. G. & Tapster, P. R. Three-particle entanglement from entangled photon pairs and a weak coherent state. Phys. Rev. A 59, R35–R38 (1999)

  17. 17

    Pan, J.-W., Simon, C., Brukner, C. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

  18. 18

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

  19. 19

    Bouwmeester, D. Bit-flip-error rejection in optical quantum communication. Phys. Rev. A 63, R040301 (2001)

  20. 20

    Hein, M., Eisert, J., & Briegel, H.J. Multi-party entanglement in graph states. Phys. Rev. A 69, 06231 (2004)

  21. 21

    Briegel, H. J & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

  22. 22

    Kwiat, P. G. et al. New high intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

  23. 23

    Kurtsiefer, C. et al. A step towards global key distribution. Nature 419, 450 (2002)

  24. 24

    De Martini, F., Buzek, V., Sciarrino, F. & Sias, C. Experimental realization of the quantum universal NOT gate. Nature 419, 815–818 (2002)

  25. 25

    Pan, J.-W., Gasparoni, S., Rupert, U., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)

  26. 26

    Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed source. Ann. NY Acad. Sci. 755, 91–102 (1995)

  27. 27

    Pittman, T. B., Jacobs, B. C. & Franson, J. D. Probabilistic quantum encoder for single-photon qubits. Phys. Rev. A 69, 042306 (2004)

  28. 28

    Zukowski, M. & Kaszlikowski, D. Critical visibility for N-particle Greenberger-Horne-Zeilinger correlations to violate local realism. Phys. Rev. A 56, R1682–R1685 (1997)

  29. 29

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

  30. 30

    Pittman, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)

Download references


This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences, the National Fundamental Research Program and the German Research Foundation (DFG).

Author information

Correspondence to Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Diagrams showing the principles of generating five-photon entanglement and of achieving open-destination teleportation.
Figure 2: Set-up for experimental demonstration of five-photon entanglement and open-destination teleportation.
Figure 3: Experimental results showing the procedure used to achieve perfect temporal overlap for photons 1 and 2 and for photons 3 and 4.
Figure 4: Experimental results for the observation of five-photon entanglement.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.