Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval


The deep-ocean circulation is responsible for a significant component of global heat transport. In the present mode of circulation, deep waters form in the North Atlantic and Southern oceans where surface water becomes sufficiently cold and dense to sink. Polar temperatures during the warmest climatic interval of the Cenozoic era ( 65 to 40 million years (Myr) ago) were significantly warmer than today, and this may have been a consequence of enhanced oceanic heat transport1. However, understanding the relationship between deep-ocean circulation and ancient climate is complicated by differences in oceanic gateways2, which affect where deep waters form and how they circulate. Here I report records of neodymium isotopes from two cores in the Pacific Ocean that indicate a shift in deep-water production from the Southern Ocean to the North Pacific 65 Myr ago. The source of deep waters reverted back to the Southern Ocean 40 Myr ago. The relative timing of changes in the neodymium and oxygen isotope records indicates that changes in Cenozoic deep-water circulation patterns were the consequence, not the cause, of extreme Cenozoic warmth.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeogeographic reconstructions during two intervals of the early Cenozoic.
Figure 2: Neodymium isotope records from ODP Sites 1209 and 1211.


  1. Sloan, L. C. & Rea, D. K. Atmospheric carbon dioxide and early Eocene climate: A general circulation modeling sensitivity study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 119, 275–292 (1995)

    Article  Google Scholar 

  2. Frakes, L. A. & Kemp, E. L. Influence of continental positions on early Tertiary climates. Nature 240, 97–100 (1972)

    Article  ADS  Google Scholar 

  3. Levitus, S. Climatological Atlas of the World Ocean (Professional Paper 13, NOAA, Washington DC, 1982)

    Google Scholar 

  4. Tomczak, M. & Godfrey, J. S. Regional Oceanography: An Introduction (Pergamon, London, 1994)

    Google Scholar 

  5. Zachos, J. C., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J. & Kent, R. W. in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.) 45–93 (AGU Geophys. Monogr. 100, American Geophysical Union, Washington DC, 1997)

    Google Scholar 

  7. DePaolo, D. J. & Wasserburg, G. J. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 248–252 (1976)

    ADS  Google Scholar 

  8. Tachikawa, K., Jeandel, C. & Roy-Barman, M. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs. Earth Planet. Sci. Lett. 170, 433–446 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Broecker, W. S., Gerard, R., Ewing, M. & Heezen, B. C. Natural radiocarbon in the Atlantic Ocean. J. Geophys. Res. 65, 2903–2931 (1960)

    Article  ADS  CAS  Google Scholar 

  10. Goldstein, S. L. & Jacobsen, S. B. Nd and Sr isotope systematics of river water suspended material: Implications for crustal evolution. Earth Planet. Sci. Lett. 87, 249–265 (1987)

    Article  ADS  Google Scholar 

  11. Halliday, A. N., Davidson, J. P., Holden, P., Owen, R. M. & Olivarez, A. M. Metalliferous sediments and the scavenging residence time of Nd near hydrothermal vents. Geophys. Res. Lett. 19, 761–764 (1992)

    Article  ADS  Google Scholar 

  12. Jones, C. E., Halliday, A. N., Rea, D. K. & Owen, R. M. Neodymium isotopic variations in the North Pacific modern silicate sediment and the insignificance of detrital REE contributions to seawater. Earth Planet. Sci. Lett. 127, 55–66 (1994)

    Article  ADS  CAS  Google Scholar 

  13. Piepgras, D. J. & Jacobsen, S. B. The isotopic composition of neodymium in the North Pacific. Geochim. Cosmochim. Acta 52, 1373–1381 (1988)

    Article  ADS  CAS  Google Scholar 

  14. Talley, L. D. Distribution and formation of North Pacific intermediate water. J. Phys. Oceanogr. 23, 517–537 (1993)

    Article  ADS  Google Scholar 

  15. Reynard, B., Lecuyer, C. & Grandjean, P. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem. Geol. 155, 233–241 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Staudigel, H., Doyle, P. & Zindler, A. Sr and Nd isotope systematics in fish teeth. Earth Planet. Sci. Lett. 76, 45–56 (1985)

    Article  ADS  CAS  Google Scholar 

  17. Martin, E. E. & Scher, H. D. Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news. Earth Planet. Sci. Lett. 220, 25–39 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Thomas, D. J. in Isotopic and Elemental Tracers of Late Cenozoic Climate Change (eds Surge, D. & Mora, G) (GSA Spec. Publ., Geological Society of America, in the press)

  19. Rutberg, R. L., Hemming, S. R. & Goldstein, S. L. Reduced North Atlantic deep water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405, 935–938 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Larson, R. L. & Pitman, W. C. III Worldwide correlation of Mesozoic magnetic anomalies and its implications. Geol. Soc. Am. Bull. 83, 3645–3661 (1972)

    Article  ADS  Google Scholar 

  21. Thomas, D. J., Bralower, T. J. & Jones, C. E. Neodymium isotopic reconstruction of late Paleocene – early Eocene thermohaline circulation. Earth Planet. Sci. Lett. 209, 309–322 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Bice, K. L., Barron, E. J. & Peterson, W. H. Continental runoff and early Cenozoic bottom-water sources. Geology 25, 951–954 (1997)

    Article  ADS  Google Scholar 

  23. Eldholm, O. & Thomas, E. Environmental impact of volcanic margin formation. Earth Planet. Sci. Lett. 117, 319–329 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Kurtz, A. C., Kump, L. R., Arthur, M. A. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 14-1–14-14 (2003)

    Article  Google Scholar 

  25. Boyle, E. A. Cadmium, zinc, copper, and barium in foraminifera tests. Earth Planet. Sci. Lett. 53, 11–35 (1981)

    Article  ADS  CAS  Google Scholar 

  26. Boyle, E. A. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for the last 250,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135–150 (1985)

    Article  ADS  CAS  Google Scholar 

  27. Tanaka, T. et al. Jndi-1: a neodymium isotopic reference in consistency with La Jolla neodymium. Chem. Geol. 168, 279–281 (2000)

    Article  ADS  Google Scholar 

  28. Bralower, T. J. et al. Proc. ODP Init. Rep. [online] 198, 〈〉 〈〉 (2002).

Download references


The author thanks T. Bralower, U. Rohl and N. Slowey for discussions, the science party, staff and crew of ODP Leg 198, and the Ocean Drilling Program for supplying sample material. This work was supported by JOI.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Deborah J. Thomas.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomas, D. Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval. Nature 430, 65–68 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing