Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of metal-reducing bacteria in arsenic release from Bengal delta sediments


The contamination of ground waters, abstracted for drinking and irrigation, by sediment-derived arsenic threatens the health of tens of millions of people worldwide, most notably in Bangladesh and West Bengal1,2,3. Despite the calamitous effects on human health arising from the extensive use of arsenic-enriched ground waters in these regions, the mechanisms of arsenic release from sediments remain poorly characterized and are topics of intense international debate4,5,6,7,8. We use a microscosm-based approach to investigate these mechanisms: techniques of microbiology and molecular ecology are used in combination with aqueous and solid phase speciation analysis of arsenic. Here we show that anaerobic metal-reducing bacteria can play a key role in the mobilization of arsenic in sediments collected from a contaminated aquifer in West Bengal. We also show that, for the sediments in this study, arsenic release took place after Fe(iii) reduction, rather than occurring simultaneously. Identification of the critical factors controlling the biogeochemical cycling of arsenic is one important contribution to fully informing the development of effective strategies to manage these and other similar arsenic-rich ground waters worldwide.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Reduction of Fe(iii), and mobilization of arsenic in microcosms containing Bengali sediments incubated under a range of biogeochemical regimes.
Figure 2: Shifts in the microbial community of the sediment from the Nadia district, West Bengal, after stimulation of anaerobic metal reduction by acetate.
Figure 3: Reduction of Fe(iii), and mobilization of arsenic in microcosms containing heat-sterilised Bengali sediments.


  1. 1

    Smith, A. H., Lingas, E. O. & Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. WHO 78, 1093–1103 (2000)

    CAS  PubMed  Google Scholar 

  2. 2

    Smedley, P. L. & Kinniburgh, D. G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568 (2002)

    CAS  Article  Google Scholar 

  3. 3

    Chakraborty, D. et al. Arsenic calamity in the Indian subcontinent. What lessons have been learnt? Talanta 58, 3–22 (2002)

    Article  Google Scholar 

  4. 4

    Das, D. et al. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 18, 5–15 (1996)

    CAS  Article  Google Scholar 

  5. 5

    Chowdhury, T. R. et al. Arsenic poisoning in the Ganges delta. Nature 401, 545–546 (1999)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Nickson, R. et al. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338 (1998)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G. & Ahmed, K. M. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15, 403–413 (2000)

    CAS  Article  Google Scholar 

  8. 8

    Oremland, R. S. & Stolz, J. F. The ecology of arsenic. Science 300, 939–944 (2003)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Harvey, C. F. et al. Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602–1606 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Acharyya, S. K. et al. Arsenic poisoning in the Ganges delta. Nature 401, 545 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Appelo, C. A. J., Van der Weiden, M. J. J., Tournassat, C. & Charlet, L. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36, 3096–3103 (2002)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Chatterjee, D. et al. Mobilization of arsenic in sedimentary aquifer vis-à-vis subsurface iron reduction processes. J. Phys. IV France 107, 293–296 (2003)

    CAS  Article  Google Scholar 

  13. 13

    Gault, A. G., et al. in Plasma Source Mass Spectrometry: Applications and Emerging Technologies (eds Holland, J. G. & Tanner, S. D.) 112–126 (Royal Society of Chemistry, Cambridge, UK, 2003)

    Book  Google Scholar 

  14. 14

    Zobrist, J., Dowdle, P. R., Davis, J. A. & Oremland, R. S. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol. 34, 4747–4753 (2000)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Gault, A. G., Polya, D. A. & Lythgoe, P. R. in Plasma Source Mass Spectrometry: The New Millennium (eds Holland, G. & Tanner, S. D.) 387–400 (Royal Society of Chemistry, Cambridge, UK, 2001)

    Book  Google Scholar 

  16. 16

    Lovley, D. R. & Phillips, E. R. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Lovley, D. R. & Chapelle, F. H. Deep subsurface microbial processes. Rev. Geophys. 33, 365–381 (1995)

    ADS  Article  Google Scholar 

  18. 18

    Gault, A. G. et al. Preliminary EXAFS studies of solid phase speciation of arsenic in a West Bengali sediment. Mineral. Mag. 67, 1183–1191 (2003)

    CAS  Article  Google Scholar 

  19. 19

    Dixit, S. & Hering, J. G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 37, 4182–4189 (2003)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Welham, N. J., Malatt, K. A. & Vukcevic, S. The stability of iron phases presently used for disposal from metallurgical systems - a review. Min. Eng. 13, 911–933 (2000)

    CAS  Article  Google Scholar 

  21. 21

    Bard, A. J., Parsons, R. & Jordan, J. Standard Potentials in Aqueous Solution (Marcel Dekker, New York, 1985)

    Google Scholar 

  22. 22

    Ranjard, L. et al. Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: Biological and methodological variability. Appl. Environ. Microbiol. 67, 4479–4487 (2001)

    CAS  Article  Google Scholar 

  23. 23

    Lloyd, J. R. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 27, 411–425 (2003)

    CAS  Article  Google Scholar 

  24. 24

    Holmes, D. E., Finneran, K. T. & Lovley, D. R. Enrichment of Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl. Environ. Microbiol. 68, 2300–2306 (2002)

    CAS  Article  Google Scholar 

  25. 25

    Teske, A., Alm, E. & Regan, J. M. Evolutionary relationships among ammonia-oxidizing and nitrite-oxidizing bacteria. J. Bacteriol. 176, 6623–6630 (1994)

    CAS  Article  Google Scholar 

  26. 26

    Kuai, L., Nair, A. A. & Polz, M. F. Rapid and simple method for the most-probable-number estimation of arsenic-reducing bacteria. Appl. Environ. Microbiol. 67, 3168–3173 (2001)

    CAS  Article  Google Scholar 

  27. 27

    Wenzel, W. W. et al. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 436, 309–323 (2001)

    CAS  Article  Google Scholar 

  28. 28

    McArthur, J. M., Ravenscroft, P., Safiulla, S. & Thirlwall, M. F. Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Wat. Resour. Res. 37, 109–117 (2001)

    ADS  CAS  Article  Google Scholar 

  29. 29

    van der Peer, Y. & de Wachter, R. Treecon for windows — a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10, 569–570 (2001)

    Google Scholar 

  30. 30

    Saitou, N. & Nei, M. The neighbor-joining method; a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    CAS  Google Scholar 

Download references


This work was supported by EPSRC, the Bangladesh Ministry of Science & Technology (Bangabandhu Fellowship to F.S.I.), The Royal Society, University of Manchester, ORS, GV Instruments and NERC. H. Rowland is thanked for XRD analysis. R. Bilsborrow and F. Mosselmans provided invaluable support in the acquisition of XAS data, which was supported by beamtime awards at Daresbury SRS by CCLRC. Fieldwork by D.C. was supported by KTH, IFCPAR and the University of Kalyani.

Author information



Corresponding author

Correspondence to Jonathan R. Lloyd.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Gives details of (1) sediment collection methods and characteristics; (2) XAS analysis of unamended sediment and brief interpretation; (3) calculation and brief discussion of relative redox potentials of Fe(III)/Fe(II) and As(V)/As(III) couples and; (4) phylogenetic affiliation of bacteria detected in unamended and amended microcosms. (PDF 350 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Islam, F., Gault, A., Boothman, C. et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68–71 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing