Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of trace metal availability on coccolithophorid calcification

Abstract

The deposition of atmospheric dust into the ocean has varied considerably over geological time1,2. Because some of the trace metals contained in dust are essential plant nutrients which can limit phytoplankton growth in parts of the ocean, it has been suggested that variations in dust supply to the surface ocean might influence primary production3,4. Whereas the role of trace metal availability in photosynthetic carbon fixation has received considerable attention, its effect on biogenic calcification is virtually unknown. The production of both particulate organic carbon and calcium carbonate (CaCO3) drives the ocean's biological carbon pump. The ratio of particulate organic carbon to CaCO3 export, the so-called rain ratio, is one of the factors determining CO2 sequestration in the deep ocean. Here we investigate the influence of the essential trace metals iron and zinc on the prominent CaCO3-producing microalga Emiliania huxleyi. We show that whereas at low iron concentrations growth and calcification are equally reduced, low zinc concentrations result in a de-coupling of the two processes. Despite the reduced growth rate of zinc-limited cells, CaCO3 production rates per cell remain unaffected, thus leading to highly calcified cells. These results suggest that changes in dust deposition can affect biogenic calcification in oceanic regions characterized by trace metal limitation, with possible consequences for CO2 partitioning between the atmosphere and the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zinc concentration in central Greenland snow and ice over the past 150,000 years.
Figure 2: Response of E. huxleyi to varying free iron concentrations ([Fe′(iii)]).
Figure 3: Response of E. huxleyi to varying free zinc concentrations ([Zn2+]).
Figure 4: Scanning electron microscopy images of E. huxleyi grown under different free zinc and CO2 concentrations.

Similar content being viewed by others

References

  1. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Mahowald, N. et al. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. 104, 15895–15916 (1999)

    Article  ADS  Google Scholar 

  3. Martin, J. H. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanogr. 5, 1–13 (1990)

    Article  ADS  Google Scholar 

  4. Morel, F. M. M. et al. Zinc and carbon co-limitation of marine phytoplankton. Nature 369, 740–742 (1994)

    Article  ADS  CAS  Google Scholar 

  5. Broecker, W. S. & Peng, T.-H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1, 15–29 (1987)

    Article  ADS  CAS  Google Scholar 

  6. Milliman, J. D. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob. Biogeochem. Cycles 7, 927–957 (1993)

    Article  ADS  CAS  Google Scholar 

  7. Baar de, H. J. W. & Boyd, P. W. in The Changing Ocean Carbon Cycle (eds Hanson, R. B., Ducklow, H. W. & Fields, J. G.) 61–140 (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  8. Conkright, M. E., Levitus, S. & Boyer, T. P. World Ocean Atlas 1994, Vol. 1 Nutrients (NOAA Atlas NESDIS 1, US Department of Commerce, Washington DC, 1994)

    Google Scholar 

  9. Coale, K. H. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific. Limnol. Oceanogr. 36, 1851–1864 (1991)

    Article  ADS  CAS  Google Scholar 

  10. Crawford, D. W. et al. Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnol. Oceanogr. 48, 1583–1600 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995)

    Article  ADS  CAS  Google Scholar 

  12. Ellwood, M. J. & Van den Berg, C. M. G. Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry. Mar. Chem. 75, 33–47 (2001)

    Article  CAS  Google Scholar 

  13. Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2 . Nature 407, 364–367 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Zondervan, I., Rost, B. & Riebesell, U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J. Exp. Mar. Biol. Ecol. 272, 55–70 (2002)

    Article  CAS  Google Scholar 

  15. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Eldigio, New York, 1982)

    Google Scholar 

  16. Bruland, K. W. Complexation of zinc by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 34, 269–285 (1989)

    Article  ADS  CAS  Google Scholar 

  17. Kremling, K. & Streu, P. The behaviour of dissolved Cd, Co, Zn and Pb in North Atlantic near-surface waters (30°N/60°W–60°N/2°W). Deep-Sea Res. I 48, 2541–2567 (2001)

    Article  CAS  Google Scholar 

  18. Lohan, M. C., Statham, P. J. & Crawford, D. W. Total dissolved zinc in the upper water column of the subarctic North East pacific. Deep-Sea Res. II 49, 5793–5808 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Duce, R. et al. The atmospheric input of trace species to the world ocean. Glob. Biogeochem. Cycles 5, 193–259 (1991)

    Article  ADS  CAS  Google Scholar 

  20. Liu, X. & Millero, F. J. The solubility of iron in seawater. Mar. Chem. 77, 43–54 (2002)

    Article  CAS  Google Scholar 

  21. DOE. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Seawater (eds Dickson, A. G. & Goyet, C.) Version 2.1 ORNL/CDIAC-74 〈http://andrew.ucsd.edu/co2qc/handbook.html〉 (1994)

    Google Scholar 

  22. Pettit, L. D. & Powell, K. J. IUPAC Stability Constants Database (IUPAC and Academic Software, Otley, 2001)

    Google Scholar 

  23. Millero, F. J. & Pierrot, D. A chemical equilibrium model for natural waters. Aquat. Geochem. 4, 153–199 (1998)

    Article  CAS  Google Scholar 

  24. Sunda, W. & Huntsman, S. Effect of pH, light, and temperature on Fe-EDTA chelation and Fe hydrolysis in seawater. Mar. Chem. 84, 35–47 (2003)

    Article  CAS  Google Scholar 

  25. Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. N. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973)

    Article  ADS  CAS  Google Scholar 

  26. Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 34, 1733–1743 (1987)

    Article  ADS  CAS  Google Scholar 

  27. Stoll, M. H. C., Bakker, K., Nobbe, G. H. & Haese, R. R. Continuous flow analysis of dissolved inorganic carbon content in seawater. Anal. Chem. 73, 4111–4116 (2001)

    Article  CAS  Google Scholar 

  28. Candelone, J.-P., Hong, S., Pellone, C. & Boutron, C. F. Post-Industrial Revolution changes in large-scale atmospheric pollution of the northern hemisphere by heavy metals as documented in central Greenland snow and ice. J. Geophys. Res. 100, 16605–16616 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Hong, S., Candelone, J.-P. & Boutron, C. F. Changes in zinc and cadmium concentrations in Greenland ice during the past 7760 years. Atmos. Environ. 31, 2235–2242 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Hong, S., Candelone, J.-P., Turetta, C. & Boutron, C. F. Changes in natural lead, copper, zinc and cadmium concentrations in central Greenland ice from 8250–149,100 years ago: their association with climate changes and resultant variations of dominant source contributions. Earth Planet. Sci. Lett. 143, 233–244 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Terbrüggen, K.-U. Richter and B. van der Wagt for laboratory assistance, and M. Lohan, K. W. Bruland and R. E. Zeebe for discussions during the preparation of this manuscript. This work was partly funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Schulz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, K., Zondervan, I., Gerringa, L. et al. Effect of trace metal availability on coccolithophorid calcification. Nature 430, 673–676 (2004). https://doi.org/10.1038/nature02631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02631

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing