Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathways towards and away from Alzheimer's disease

An Addendum to this article was published on 02 September 2004

Abstract

Slowly but surely, Alzheimer's disease (AD) patients lose their memory and their cognitive abilities, and even their personalities may change dramatically. These changes are due to the progressive dysfunction and death of nerve cells that are responsible for the storage and processing of information. Although drugs can temporarily improve memory, at present there are no treatments that can stop or reverse the inexorable neurodegenerative process. But rapid progress towards understanding the cellular and molecular alterations that are responsible for the neuron's demise may soon help in developing effective preventative and therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alzheimer's disease results in shrinkage of brain regions involved in learning and memory which is correlated with major reductions in cellular energy metabolism in living patients.
Figure 2: The neurotoxic action of Aβ involves generation of reactive oxygen species and disruption of cellular calcium homeostasis.
Figure 3: Strategies and targets for the prevention and treatment of AD.

Similar content being viewed by others

References

  1. Dickson, D. W. Neuropathological diagnosis of Alzheimer's disease: a perspective from longitudinal clinicopathological studies. Neurobiol. Aging 18, S21–S26 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. Braak, H. & Braak, E. Evolution of neuronal changes in the course of Alzheimer's disease. J. Neural Transm. Suppl. 53, 127–140 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Selkoe, D. J. & Schenk, D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 43, 545–584 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Hardy, J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20, 154–159 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Roses, A. D. A model for susceptibility polymorphisms for complex diseases: apolipoprotein E and Alzheimer disease. Neurogenetics 1, 3–11 (1997)

    Article  CAS  PubMed  Google Scholar 

  8. Tanzi, R. E. & Bertram, L. New frontiers in Alzheimer's disease genetics. Neuron 32, 181–184 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Mayeux, R. Epidemiology of neurodegeneration. Annu. Rev. Neurosci. 26, 81–104 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Mattson, M. P. Gene-diet interactions in brain aging and neurodegenerative disorders. Ann. Intern. Med. 139, 441–444 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Young, D. et al. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nature Med. 5, 448–453 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J., Duan, W. & Mattson, M. P. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem. 82, 1367–1375 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Cotman, C. W. & Berchtold, N. C. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Bush, A. I., Masters, C. L. & Tanzi, R. E. Copper, beta-amyloid, and Alzheimer's disease: tapping a sensitive connection. Proc. Natl Acad. Sci. USA 100, 11193–11194 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haass, C. et al. The Swedish mutation causes early-onset Alzheimer's disease by beta-secretase cleavage within the secretory pathway. Nature Med. 1, 1291–1296 (1995)

    Article  CAS  PubMed  Google Scholar 

  16. Scheuner, D. et al. Secreted amyloid beta-protein similar to that in senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. Mattson, M. P. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. Morgan, D. et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Butterfield, D. A. et al. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptide. Trends Mol. Med. 7, 548–554 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Smith, M. A. et al. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA 94, 9866–9868 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blass, J. P. Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J. Neurosci. Res. 66, 851–856 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Dodart, J. C. et al. Early regional cerebral glucose hypometabolism in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Neurosci. Lett. 277, 49–52 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. Buchner, M., Huber, R., Sturchler-Pierrat, C., Staufenbiel, M. & Riepe, M. W. Impaired hypoxic tolerance and altered protein binding of NADH in presymptomatic APP23 transgenic mice. Neuroscience 114, 285–289 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Watson, G. S. & Craft, S. The role of insulin resistance in the pathogenesis of Alzheimer's disease: implications for treatment. CNS Drugs 17, 27–45 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Gabuzda, D., Busciglio, J., Chen, L. B., Matsudaira, P. & Yankner, B. A. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J. Biol. Chem. 269, 13623–13628 (1994)

    Article  CAS  PubMed  Google Scholar 

  26. Saito, K. et al. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc. Natl Acad. Sci. USA 90, 2628–2632 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mattson, M. P. & Chan, S. L. Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium 34, 385–397 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Le, Y. et al. Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci. 21, RC123 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. LaFerla, F. M. Calcium dyshomeostasis and intracellular signaling in Alzheimer's disease. Nature Rev. Neurosci. 3, 862–872 (2002)

    Article  CAS  Google Scholar 

  30. Yang, Y. & Cook, D. G. Presenilin-1 deficiency impairs glutamate-evoked intracellular calcium responses in neurons. Neuroscience 124, 501–506 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Eckert, A. et al. Alzheimer's disease-like alterations in peripheral cells from presenilin-1 transgenic mice. Neurobiol. Dis. 8, 331–342 (2001)

    Article  CAS  PubMed  Google Scholar 

  32. Puglielli, L., Tanzi, R. E. & Kovacs, D. M. Alzheimer's disease: the cholesterol connection. Nature Neurosci. 6, 345–351 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Wolozin, B. et al. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57, 1439–1443 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 5856–5861 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalmijn, S. Fatty acid intake and the risk of dementia and cognitive decline: a review of clinical and epidemiological studies. J. Nutr. Health Aging 4, 202–207 (2000)

    CAS  PubMed  Google Scholar 

  36. Ehehalt, R. et al. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cutler, R. G. et al. Involvment of perturbed ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 2070–2075 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Farlow, M. A clinical overview of cholinesterase inhibitors in Alzheimer's disease. Int. Psychogeriatr. 14, 93–126 (2002)

    Article  PubMed  Google Scholar 

  39. West, M. J. et al. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet 344, 769–772 (1994)

    Article  CAS  PubMed  Google Scholar 

  40. Gomez-Isla, T. et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann. Neurol. 41, 17–24 (1997)

    Article  CAS  PubMed  Google Scholar 

  41. Lustbader, J. W. et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 304, 448–452 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. McGeer, P. L. & McGeer, E. G. Local neuroinflammation and the progression of Alzheimer's disease. J. Neurovirol. 8, 529–538 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. Xu, J. et al. Amyloid-beta peptides are cytotoxic to oligodendrocytes. J. Neurosci. 21, RC118 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schenk, D. et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Bard, F. et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 6, 916–919 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. Jantzen, P. T. et al. Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J. Neurosci. 22, 2246–2254 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. DeKosky, S. T. & Scheff, S. W. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464 (1990)

    Article  CAS  PubMed  Google Scholar 

  48. Murai, K. K. et al. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature Neurosci. 6, 153–160 (2003)

    Article  CAS  PubMed  Google Scholar 

  49. Cummings, B. J. et al. Neuritic involvement within bFGF immunopositive plaques of Alzheimer's disease. Exp. Neurol. 124, 315–325 (1993)

    Article  CAS  PubMed  Google Scholar 

  50. Barger, S. W. et al. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl Acad. Sci. USA 92, 9328–9332 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pope, S. K., Shue, V. M. & Beck, C. Will a healthy lifestyle help prevent Alzheimer's disease? Annu. Rev. Public Health 24, 111–132 (2003)

    Article  PubMed  Google Scholar 

  52. Zandi, P. P. et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch. Neurol. 61, 82–88 (2004)

    Article  PubMed  Google Scholar 

  53. Wang, H. X. et al. Vitamin B(12) and folate in relation to the development of Alzheimer's disease. Neurology 56, 1188–1194 (2001)

    CAS  PubMed  Google Scholar 

  54. Dewachter, L. & Van Leuven, F. Secretases as targets for the treatment of Alzheimer's disease: the prospects. Lancet Neurol. 1, 409–416 (2002)

    Article  CAS  PubMed  Google Scholar 

  55. John, V. et al. Human beta-secretase (BACE) and BACE inhibitors. J. Med. Chem. 46, 4625–4630 (2003)

    Article  CAS  PubMed  Google Scholar 

  56. Roberds, S. L. et al. BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum. Mol. Genet. 10, 1317–1324 (2001)

    Article  CAS  PubMed  Google Scholar 

  57. Ritchie, C. W. et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch. Neurol. 60, 1685–1691 (2003)

    Article  PubMed  Google Scholar 

  58. Schenk, D. et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  59. McLaurin, J. et al. Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nature Med. 8, 1263–1269 (2002)

    Article  CAS  PubMed  Google Scholar 

  60. Kotilinek, L. A. et al. Reversible memory loss in a mouse transgenic model of Alzheimer's disease. J. Neurosci. 22, 6331–6335 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hock, C. et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron 38, 547–554 (2003)

    Article  CAS  PubMed  Google Scholar 

  62. Hoozemans, J. J. et al. Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer's disease. Curr. Drug Targets 4, 461–468 (2003)

    Article  CAS  PubMed  Google Scholar 

  63. Resnick, S. M. & Henderson, V. W. Hormone therapy and risk of Alzheimer disease. J. Am. Med. Assoc. 288, 2170–2172 (2002)

    Article  Google Scholar 

  64. Buxbaum, J. D. et al. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 27765–27767 (1998)

    Article  CAS  PubMed  Google Scholar 

  65. Asai, M. et al. Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem. Biophys. Res. Commun. 301, 231–235 (2003)

    Article  CAS  PubMed  Google Scholar 

  66. Leissring, M. A. et al. A physiologic signaling role for the gamma -secretase-derived intracellular fragment of APP. Proc. Natl Acad. Sci. USA 99, 4697–4702 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu, D. C. et al. A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nature Med. 6, 397–404 (2000)

    Article  CAS  PubMed  Google Scholar 

  68. Yu, G. et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407, 48–54 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Francis, R. et al. aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev. Cell 3, 85–97 (2002)

    Article  CAS  PubMed  Google Scholar 

  70. Takasugi, N. et al. The role of presenilin cofactors in the gamma-secretase complex. Nature 422, 438–441 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Shen, J. et al. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639 (1997)

    Article  CAS  PubMed  Google Scholar 

  72. Lazarov, O., Lee, M., Peterson, D. A. & Sisodia, S. S. Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J. Neurosci. 22, 9785–9793 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kimberly, W. T. et al. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J. Biol. Chem. 276, 40288–40292 (2001)

    Article  CAS  PubMed  Google Scholar 

  74. Yankner, B. A. et al. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250, 279–282 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 6448–6453 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Chapman, P. F. et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci. 2, 271–276 (1999)

    Article  CAS  PubMed  Google Scholar 

  78. Koistinaho, M. et al. Specific spatial learning deficits become severe with age in beta -amyloid precursor protein transgenic mice that harbor diffuse beta-amyloid deposits but do not form plaques. Proc. Natl Acad. Sci. USA 98, 14675–14680 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003)

    Article  CAS  PubMed  Google Scholar 

  80. Gong, Y. et al. Alzheimer's disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA 100, 10417–10422 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Klein, W. L., Krafft, G. A. & Finch, C. E. Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 24, 219–224 (2001)

    Article  CAS  PubMed  Google Scholar 

  82. Oster-Granite, M. L. et al. Age-dependent neuronal and synaptic degeneration in mice transgenic for the C terminus of the amyloid precursor protein. J. Neurosci. 16, 6732–6741 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39, 409–421 (2003)

    Article  CAS  PubMed  Google Scholar 

  84. Mucke, L. et al. High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chan, S. L., Furukawa, K. & Mattson, M. P. Presenilins APP in neuritic and synaptic plasticity: implications for the pathogenesis of Alzheimer's disease. Neuromolecular Med. 2, 167–196 (2002)

    Article  CAS  PubMed  Google Scholar 

  86. Stahl, R. et al. Assessment of axonal degeneration on Alzheimer's disease with diffusion tensor MRI. Radiologe 43, 566–575 (2003)

    Article  CAS  PubMed  Google Scholar 

  87. Buxbaum, J. D. et al. Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J. Neurosci. 18, 9629–9637 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mandelkow, E. M. et al. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol. Aging 24, 1079–1085 (2003)

    Article  CAS  PubMed  Google Scholar 

  89. Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001)

    Article  CAS  PubMed  Google Scholar 

  90. Masliah, E. et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. Neurology 56, 127–129 (2001)

    Article  CAS  PubMed  Google Scholar 

  91. Yao, P. J. Synaptic frailty and clathrin-mediated synaptic vesicle trafficking in Alzheimer's disease. Trends Neurosci. 27, 24–29 (2004)

    Article  CAS  PubMed  Google Scholar 

  92. Yuan, J. & Yankner, B. A. Apoptosis in the nervous system. Nature 407, 802–809 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nature Rev. Mol. Cell Biol. 1, 120–129 (2000)

    Article  CAS  Google Scholar 

  94. Eckert, A. et al. Mitochondrial dysfunction, apoptotic cell death, and Alzheimer's disease. Biochem. Pharmacol. 66, 1627–1634 (2003)

    Article  CAS  PubMed  Google Scholar 

  95. McPhie, D. L. et al. DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J. Neurosci. 23, 6914–6927 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, M. S. et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Kruman, I. I. et al. Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41, 549–561 (2004)

    Article  CAS  PubMed  Google Scholar 

  98. Van Leeuwen, F. W. et al. Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science 279, 242–247 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Song, S. et al. Essential role of E2–25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol. Cell 12, 553–563 (2003)

    Article  CAS  PubMed  Google Scholar 

  100. Pedersen, W. A., Wan, R., Zhang, P. & Mattson, M. P. Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type I. J. Neurosci. 22, 404–412 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Ethics declarations

Competing interests

The author declares that he has no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, M. Pathways towards and away from Alzheimer's disease. Nature 430, 631–639 (2004). https://doi.org/10.1038/nature02621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02621

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing