Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deterministic quantum teleportation of atomic qubits


Quantum teleportation1 provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication2 and quantum computation3. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables4,5,6,7,8,9, and with liquid-state nuclear magnetic resonance10. Here we report unconditional teleportation5 of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement11. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system12,13.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of the teleportation protocol.
Figure 2: Ramsey fringes demonstrating the teleportation protocol.


  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    ADS  CAS  Article  Google Scholar 

  3. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    ADS  CAS  Article  Google Scholar 

  4. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  CAS  Article  Google Scholar 

  5. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998)

    ADS  CAS  Article  Google Scholar 

  6. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  7. Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    ADS  CAS  Article  Google Scholar 

  8. Bowen, W. P. et al. Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A. 67, 032302 (2003)

    ADS  Article  Google Scholar 

  9. Zhang, T. C., Goh, K. W., Chou, C. W., Lodahl, P. & Kimble, H. J. Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003)

    ADS  Article  Google Scholar 

  10. Nielsen, M. A., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998)

    ADS  CAS  Article  Google Scholar 

  11. Massar, M. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  12. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–358 (2003)

    Article  Google Scholar 

  13. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    ADS  CAS  Article  Google Scholar 

  14. Nielsen, M. A. & Chuang, I. L Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000)

    MATH  Google Scholar 

  15. Rowe, M. A. et al. Transport of quantum states and separation of ions in a dual rf ion trap. Quant. Inf. Comp. 2, 257–271 (2002)

    CAS  MATH  Google Scholar 

  16. Wineland, D. J. et al. Quantum information processing with trapped ions. Phil. Trans. R. Soc. Lond. A 361, 1349–1361 (2003)

    ADS  CAS  Article  Google Scholar 

  17. Barrett, M. D. et al. Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic. Phys. Rev. A 68, 042302 (2003)

    ADS  Article  Google Scholar 

  18. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    ADS  CAS  Article  Google Scholar 

  19. Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001)

    ADS  CAS  Article  Google Scholar 

  20. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature (this issue)

  21. King, B. E. et al. Cooling the collective motion of trapped ions to initialize a quantum register. Phys. Rev. Lett. 81, 1525–1528 (1998)

    ADS  CAS  Article  Google Scholar 

Download references


This work was supported by ARDA/NSA and NIST. We thank J. Bollinger and J. Martinis for helpful comments on the manuscript. T.S. acknowledges a Deutsche Forschungsgemeinschaft research grant. This paper is a contribution of the National Institute of Standards and Technology and is not subject to US copyright.

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. J. Wineland.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barrett, M., Chiaverini, J., Schaetz, T. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing