Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geochemical evidence from the Sudbury structure for crustal redistribution by large bolide impacts

Abstract

Deformation and melting of the crust during the formation of large impact craters must have been important during the Earth's early evolution, but such processes remain poorly understood1. The 1.8-billion-year-old Sudbury structure2 in Ontario, Canada, is greater than 200 km in diameter and preserves a complete impact section, including shocked basement rocks, an impact melt sheet and fallback material3,4. It has generally been thought that the most voluminous impact melts represent the average composition of the continental crust4, but here we show that the melt sheet now preserved as the Sudbury Igneous Complex is derived predominantly from the lower crust. We therefore infer that the hypervelocity impact caused a partial inversion of the compositional layering of the continental crust. Using geochemical data, including platinum-group-element abundances, we also show that the matrix of the overlying clast-laden Onaping Formation represents a mixture of the original surficial sedimentary strata, shock-melted lower crust and the impactor itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic section of shock-melted and excavated volumes in 40-km-thick continental crust after impact of an approximately 10-km bolide (after ref.
Figure 2: Compositions of the SIC and the Dowling member.
Figure 3: Ir and Ni contents of target rocks, impact melt, and Onaping Formation.

Similar content being viewed by others

References

  1. Melosh, H. J. & Ivanov, B. A. Impact crater collapse. Annu. Rev. Earth Planet Sci. 27, 385–415 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Krogh, T. E., Davis, D. W. & Corfu, F. in The Geology and Ore Deposits of the Sudbury Structure (eds Pye, E. G. et al.) 431–446 (Ontario Geological Survey, Special Vol. 1, 1984)

    Google Scholar 

  3. Dietz, R. S. Sudbury Structure as an astrobleme. J. Geol. 72, 412–434 (1964)

    Article  ADS  Google Scholar 

  4. Grieve, R. A. F., Stoffler, D. & Deutsch, A. The Sudbury structure: controversial or misunderstood? J. Geophys. Res. 96, 22,753–22,764 (1991)

    Article  ADS  Google Scholar 

  5. Bunch, T. E. et al. in Large Impacts and Planetary Evolution (eds Dressler, B. O. & Sharpton, V. L.) 331–343 (Geological Society of America, Special Paper Vol. 339, 1999)

    Google Scholar 

  6. Ripley, E. M., Park, Y.-R., Lambert, D. D. & Frick, L. R. Re-Os isotopic variations in carbonaceous pelites hosting the Duluth Complex: Implications for metamorphic and metasomatic processes associated with mafic magma chambers. Geochim. Cosmochim. Acta 65, 2965–2978 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Schneider, D. A., Bickford, M. E., Cannon, W. F., Schulz, K. J. & Hamilton, M. A. Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Can. J. Earth Sci. 39, 999–1012 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Masaitis, V. L. et al. in Large Impacts and Planetary Evolution (eds Dressler, B. O. & Sharpton, V. L.) 317–321 (Geological Society of America, Special Paper Vol. 339, 1999)

    Google Scholar 

  9. Grieve, R. A. F. & Cintala, M. J. An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 27, 526–538 (1992)

    Article  ADS  Google Scholar 

  10. Pierazzo, E., Vickery, A. M. & Melosh, H. J. A reevaluation of impact melt production. Icarus 127, 408–423 (1997)

    Article  ADS  Google Scholar 

  11. Ivanov, B. A. & Deutsch, A. in Large Impacts and Planetary Evolution (eds Dressler, B. O. & Sharpton, V. L.) 389–396 (Geological Society of America, Special Paper Vol. 339, 1999)

    Google Scholar 

  12. Therriault, A. M., Fowler, A. D. & Grieve, R. A. F. The Sudbury Igneous Complex: a differentiated impact melt-sheet. Econ. Geol. 97, 1521–1540 (2002)

    Article  CAS  Google Scholar 

  13. Ames, D. E., Golightly, J. P., Lightfoot, P. C. & Gibson, H. L. Vitric compositions in the Onaping Formation and their relationship to the Sudbury Igneous Complex, Sudbury Structure. Econ. Geol. 97, 1541–1562 (2002)

    Article  CAS  Google Scholar 

  14. Ames, D. E., Watkinson, D. H. & Parrish, R. R. Dating of a regional hydrothermal system induced by the 180 Ma Sudbury impact event. Geology 26, 447–450 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Coleman, A. P. The Sudbury nickel deposits. Ontario Bureau Mines Rep. 1902, 253–303 (1903)

  16. Lightfoot, P. C., Keays, R. R., Morrison, G. G., Bite, A. & Farrell, K. P. Geochemical relationships in the Sudbury Igneous Complex: origin of the main mass and Offset dikes. Econ. Geol. 92, 289–307 (1997)

    Article  CAS  Google Scholar 

  17. Cowan, E. J. & Schwerdtner, W. M. in Proceedings of the Sudbury-Noril'sk Symposium (eds Lightfoot, P. C. & Naldrett, A. J.) 45–56 (Ontario Geological Survey, Special Vol. 5, 1994)

    Google Scholar 

  18. Richardson, T. & Burnham, O. M. Precious metal analysis at the Geoscience Laboratories: results from the new low-level analytical facility. Ont. Geol. Surv. Open File Rep. 6100, 35 (2002)

    Google Scholar 

  19. Dickin, A. P., Nguyen, T. & Crockett, J. H. in Large Impacts and Planetary Evolution (eds Dressler, B. O. & Sharpton, V. L.) 361–371 (Geological Society of America, Special Paper Vol. 339, 1999)

    Google Scholar 

  20. Mungall, J. E. Program with Abstracts for 38th Annual GSA Northeastern Division Meeting, Halifax 23–29 (Geological Society of America, 2003)

    Google Scholar 

  21. Lightfoot, P. C. & Farrow, C. E. G. Geology, geochemistry, and mineralogy of the Worthington Offset dike: a genetic model for Offset dike mineralization in the Sudbury Igneous Complex. Econ. Geol. 97, 1419–1446 (2002)

    Article  CAS  Google Scholar 

  22. Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Gao, S. et al. Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 62, 1959–1975 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Pope, K. O., Kieffer, S. W. & Ames, D. E. Empirical and theoretical comparisons of the Chicxulub and Sudbury Impact Craters. Meteorit. Planet. Sci. 39, 97–116 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Campins, H. & Swindle, T. D. Expected characteristics of cometary meteorites. Meteorit. Planet. Sci. 33, 1201–1211 (1998)

    Article  ADS  CAS  Google Scholar 

  26. McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Paťava, J., Barnes, S.-J. & Vymazalová, A. The use of mantle normalization and metal ratios in the identification of the sources of platinum-group elements in various metal-rich black shales. Mineral. Dep. 38, 775–783 (2003)

    Article  ADS  Google Scholar 

  28. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary boundary extinction. Science 208, 1095–1108 (1980)

    Article  ADS  CAS  PubMed Central  Google Scholar 

  29. Colodner, D. C., Boyle, E. A., Edmond, J. M. & Thomson, J. Post-depositional mobility of platinum, iridium and rhenium in marine sediments. Nature 358, 402–404 (1992)

    Article  ADS  CAS  Google Scholar 

  30. Heymann, D. et al. in Large Impacts and Planetary Evolution (eds Dressler, B. O. & Sharpton, V. L.) 345–360 (Geological Society of America, Special Paper Vol. 339, 1999)

    Google Scholar 

Download references

Acknowledgements

This study was generously supported by the University of Toronto, by the Geoscience Laboratories of the Ontario Geological Survey, and by the Geological Survey of Canada.Author's contributions Mapping and sampling was performed by J.E.M., D.E.A. and J.J.H.; geochemical interpretation was done by J.E.M., D.E.A. and J.J.H., in decreasing order of relative contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Mungall.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mungall, J., Ames, D. & Hanley, J. Geochemical evidence from the Sudbury structure for crustal redistribution by large bolide impacts. Nature 429, 546–548 (2004). https://doi.org/10.1038/nature02577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02577

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing