Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Release of methane from a volcanic basin as a mechanism for initial Eocene global warming

Abstract

A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (10,000 yr) input of isotopically depleted carbon1,2. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source3,4 and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the Vøring and Møre basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane—transported to the ocean or atmosphere through the vent complexes—close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (250 million years ago) and the Karoo Igneous Province (183 million years ago).

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Distribution of hydrothermal vent complexes and volcanic intrusive and extrusive complexes on the mid-Norwegian continental margin.
Figure 2: Seismic example of hydrothermal vent complexes in the southeast Vøring Basin.
Figure 3: Schematic line drawing of a seismic profile across the hydrothermal vent complex drilled by 6607/12-1. A vertical zone of disturbed seismic data is interpreted as a conduit zone connecting the tip of a sill intrusion with the palaeo-surface.
Figure 4: Estimated methane production potential of the Vøring and Møre basins.

References

  1. Kennett, J. P. & Stott, L. D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353, 225–229 (1991)

    ADS  Article  Google Scholar 

  2. Schmitz, B. & Pujalte, V. Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain. Geology 31, 689–692 (2003)

    ADS  Article  Google Scholar 

  3. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    ADS  Article  Google Scholar 

  4. Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast from the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 (1997)

    ADS  CAS  Article  Google Scholar 

  5. Skogseid, J., Pedersen, T., Eldholm, O. & Larsen, B. T. Tectonism and magmatism during NE Atlantic continental break-up: the Vøring Margin. Geol. Soc. Spec. Publ. 68, 305–320 (1992)

    ADS  Article  Google Scholar 

  6. Berndt, C., Skogly, O. P., Planke, S. & Eldholm, O. High-velocity breakup-related sills in the Vøring Basin, off Norway. J. Geophys. Res. 105, 28443–28454 (2000)

    ADS  Article  Google Scholar 

  7. Brekke, H. The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. Geol. Soc. Spec. Publ. 167, 327–378 (2000)

    ADS  Article  Google Scholar 

  8. Smallwood, J. R. & Maresh, J. The properties, morphology and distribution of igneous sills: modelling, borehole data and 3D seismic from the Faroe-Shetland area. Geol. Soc. Spec. Publ. 197, 271–306 (2002)

    ADS  Article  Google Scholar 

  9. Chevallier, L. & Woodford, A. C. Morpho-tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. S. Afr. J. Geol. 102, 43–54 (1999)

    CAS  Google Scholar 

  10. Brekke, H., Dahlgren, S., Nyland, B. & Magnus, C. The prospectivity of the Vøring and Møre basins on the Norwegian Sea continental margin. in Petrol. Geol. NW Eur. Proc. 5th Conf. (eds Fleet, A. J. & Boldy, S. A. R.) 261–274 (Geol. Soc. Publ., London, 1999)

    Google Scholar 

  11. Jamveit, B., Svensen, H., Podladchikov, Y. & Planke, S. Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Geol. Soc. Lond. Spec. Publ.(in the press)

  12. Svensen, H., Jamtveit, B. & Planke, S. Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the Vøring volcanic basin, the Norwegian Sea. Geo-Mar. Lett. 23, 351–358 (2003)

    ADS  CAS  Article  Google Scholar 

  13. Planke, S., Rasmussen, T., Rey, S. S. & Myklebust, R. Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In Petrol. Geol. NW Europe and Global Perspectives—Proc. 6th Petrol. Geol. Conf. (eds Tony Dore, T. & Vining, B.) (Geol. Soc. Publ., London, in the press)

  14. Woodford, A. C., et al. Hydrogeology of the Main Karoo Basin: Current Knowledge and Research Needs (Water Research Commission report 860, WRC, Pretoria, 2001)

    Google Scholar 

  15. Berggren, W. A., Kent, D. V., Swisher, C. C. & Aubry, M.-P. A revised Cenozoic geochronology and chronostratigraphy. Soc. Sed. Geol. Spec. Publ. 54, 129–212 (1995)

    Google Scholar 

  16. Crouch, E. M. et al. Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology 29, 315–318 (2001)

    ADS  CAS  Article  Google Scholar 

  17. Trude, J., Cartwright, J., Davies, R. J. & Smallwood, J. New technique for dating igneous sills. Geology 31, 813–816 (2003)

    ADS  Article  Google Scholar 

  18. Hopper, P. R. The Columbia River flood basalt province: Current Status. AGU Geophys. Monogr. 100, 1–28 (1997)

    Google Scholar 

  19. Weinberg, R. F. & Podladchikov, Y. Diapiric ascent of magmas through power-law crust and mantle. J. Geophys. Res. 99, 9543–9559 (1994)

    ADS  Article  Google Scholar 

  20. Eldholm, O. & Grue, K. North Atlantic volcanic margins: dimensions and production rates. J. Geophys. Res. 99, 2955–2968 (1995)

    ADS  Article  Google Scholar 

  21. Hunt, J. M. Petroleum Geochemistry and Geology (W. H. Freeman, San Francisco, 1996)

    Google Scholar 

  22. Kjeldstad, A., Langtangen, H. P., Skogseid, J. & Bjørlykke, K. in Advanced Topics in Computation Partial Differential Equations—Numerical Methods and Diffpack Programming (eds Langtangen, H. P. & Tveito, A.) 611–656 (Springer, 2003)

    Book  Google Scholar 

  23. Galushkin, Y. I. Thermal effects of igneous intrusions on maturity of organic matter: a possible mechanism of intrusion. Org. Geochem. 26, 645–658 (1997)

    CAS  Article  Google Scholar 

  24. Zachos, J. C. et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302, 1551–1554 (2003)

    ADS  CAS  Article  Google Scholar 

  25. Eldholm, O. & Thomas, E. Environmental impact of volcanic margin formation. Earth Planet. Sci. Lett. 117, 319–329 (1993)

    ADS  CAS  Article  Google Scholar 

  26. Caldeira, K. & Rampino, M. R. The mid-Cretaceous super plume, carbon dioxide, and global warming. Geophys. Res. Lett. 18, 987–990 (1991)

    ADS  CAS  Article  Google Scholar 

  27. Zhang, Y. Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions. Geophys. Res. Lett. 30, doi:10.1029/2002GL016658 (2003)

  28. IPCC (Intergovernmental Panel on Climate Change). Climate Change 2001: The Scientific Basis (IPCC, Geneva, 2001)

    Google Scholar 

  29. Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001)

    ADS  CAS  Article  Google Scholar 

  30. Eckhoff, E. E. Foraminiferstratigrafi og Faunautvikling i Turbidittfacies fra Over Kritt på Midtnorsk Sokkel Candidatus Scientiarum thesis, Dept Geol., Univ. Oslo (1999)

    Google Scholar 

  31. Berndt, C., Planke, S., Alvestad, E., Tsikalas, F. & Rasmussen, R. Seismic volcanostratigraphy of the Norwegian Margin: constraints on tectonomagmatic break-up processes. J. Geol. Soc. Lond. 158, 413–426 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants (H.S. and B.J.) from the Norwegian Research Council. We thank TGS-NOPEC for access to seismic data, H. Selnes for the biostratigraphic dating, and G. R. Dickens and J. G. Feder for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henrik Svensen or Sverre Planke.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Svensen, H., Planke, S., Malthe-Sørenssen, A. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004). https://doi.org/10.1038/nature02566

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02566

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing