Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina

Abstract

Beneath much of the Andes, oceanic lithosphere descends eastward into the mantle at an angle of about 30° (ref. 1). A partially molten region is thought to form in a wedge between this descending slab and the overlying continental lithosphere as volatiles given off by the slab lower the melting temperature of mantle material2. This wedge is the ultimate source for magma erupted at the active volcanoes that characterize the Andean margin. But between 28° and 33° S the subducted Nazca plate appears to be anomalously buoyant3,4, as it levels out at about 100 km depth and extends nearly horizontally under the continent1,5,6. Above this ‘flat slab’, volcanic activity in the main Andean Cordillera terminated about 9 million years ago as the flattening slab presumably squeezed out the mantle wedge5,6. But it is unknown where slab volatiles go once this happens, and why the flat slab finally rolls over to descend steeply into the mantle 600 km further eastward. Here we present results from a magnetotelluric profile in central Argentina, from which we infer enhanced electrical conductivity along the eastern side of the plunging slab, indicative of the presence of partial melt. This conductivity structure may imply that partial melting occurs to at least 250 km and perhaps to more than 400 km depth, or that melt is supplied from the 410 km discontinuity, consistent with the transition-zone ‘water-filter’ model of Bercovici and Karato7.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location map showing main physiographic features, contours of the depth in kilometres to the Wadati–Benioff earthquake zone1 and the MT sites.
Figure 2: Inversions of MT data for electrical structure beneath central Argentina.

Similar content being viewed by others

References

  1. Cahill, T. & Isacks, B. Seismicity and shape of the subducted Nazca Plate. J. Geophys. Res. 97, 17503–17529 (1992)

    Article  ADS  Google Scholar 

  2. Ulmer, P. Partial melting in the mantle wedge – the role of H2O in the genesis of mantle-derived “arc-related” magmas. Phys. Earth Planet. Inter. 127, 215–232 (2000)

    Article  ADS  Google Scholar 

  3. Cloos, M. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts. Geol. Soc. Am. Bull. 105, 714–737 (1993)

    Article  Google Scholar 

  4. McGeary, S., Nur, A. & Ben-Avraham, Z. Spatial gaps in arc volcanism: the effect of collision or subduction of oceanic plateaus. Tectonophysics 119, 195–221 (1985)

    Article  ADS  Google Scholar 

  5. Kay, S. M. & Mpodozis, C. Magmatism as a probe of Neogene shallowing of the Nazca Plate beneath the modern Chilean flat-slab. J. S. Am. Earth Sci. 15, 39–57 (2002)

    Article  Google Scholar 

  6. Ramos, V. A., Cristallini, E. O. & Pérez, D. J. The Pampean flat-slab of the central Andes. J. S. Am. Earth Sci. 15, 59–78 (2002)

    Article  Google Scholar 

  7. Bercovici, D. & Karato, S. Whole mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Jordan, T. & Allmendinger, R. Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am. J. Sci. 286, 737–764 (1986)

    Article  ADS  Google Scholar 

  9. Rogers, J. W. A history of continents in the past three billion years. J. Geol. 104, 91–107 (1996)

    Article  ADS  Google Scholar 

  10. Vozoff, K. in Electromagnetic Methods in Applied Geophysics Vol. 2 (ed. Nabighian, M. N.) 641–711 (Society of Exploration Geophysicists, Tulsa, 1991)

    Book  Google Scholar 

  11. Jones, A. G. in Continental Lower Crust (eds Fountain, D. M., Arculus, R. & Key, R. W.) 81–143 (Elsevier, Amsterdam, 1992)

    Google Scholar 

  12. Jones, A. G. Imaging the continental upper mantle using electromagnetic methods. Lithos 48, 57–80 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Schilling, F. R., Partzsch, G. M., Brasse, H. & Schwarz, G. Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys. Earth Planet. Inter. 103, 17–31 (1997)

    Article  ADS  Google Scholar 

  14. Williams, Q. & Hemley, R. J. Hydrogen in the deep Earth. Annu. Rev. Earth Planet. Sci. 29, 365–418 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Xu, Y., Shankland, T. J. & Poe, B. T. Laboratory-based electrical conductivity in the Earth's mantle. J. Geophys. Res. 105, 27865–27875 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Peyronneau, J. & Poirier, J. P. Electrical conductivity of the Earth's lower mantle. Nature 342, 537–539 (1989)

    Article  ADS  Google Scholar 

  17. Carter, N. L. & Tsenn, M. C. Flow properties of continental lithosphere. Tectonophysics 136, 27–63 (1987)

    Article  ADS  Google Scholar 

  18. Chebli, G. A., Mozetic, M. E., Rosello, E. A. & Bühler, M. in Geología Argentina (ed. Caminos, R.) 627–644 (Inst. de Geología y Recursos Minerales, Buenos Aires, 1999)

    Google Scholar 

  19. Chave, A. D. & Smith, J. T. On electric and magnetic galvanic distortion tensor decompositions. J. Geophys. Res. 99, 4669–4682 (1994)

    Article  ADS  Google Scholar 

  20. Rodi, W. & Mackie, R. Non-linear conjugate gradient algorithm for 2-D magnetotelluric inversion. Geophysics 66, 174–178 (2001)

    Article  ADS  Google Scholar 

  21. Wannamaker, P. E. in Three-dimensional Electromagnetics (eds Oristaglio, M. & Spies, B.) 511–527 (Society of Exploration Geophysicists, Tulsa, 1999)

    Google Scholar 

  22. Pearson, D. G. et al. The characterization and origin of graphite in cratonic lithospheric mantle: a petrological carbon isotope and Raman spectroscopic study. Contrib. Mineral. Petrol. 115, 449–466 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Roberts, J. J. & Tyburczy, J. A. Partial-melt electrical conductivity: Influence of melt composition. J. Geophys. Res. 104, 7055–7065 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Park, S. & Ducea, M. Can in situ measurements of mantle electrical conductivity be used to infer properties of partial melts? J. Geophys. Res. 108, 2270 (2003)

    ADS  Google Scholar 

  25. Norabuena, E. O., Dixon, T. H., Stein, S. & Harrison, C. G. A. Decelerating Nazca-South America and Nazca-Pacific plate motions. Geophys. Res. Lett. 26, 3402–3404 (1999)

    Article  ADS  Google Scholar 

  26. Wiley, P. J. Magmas and volatile components. Am. Mineral. 64, 469–500 (1979)

    Google Scholar 

  27. Bureau, H. & Keppler, H. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet. Sci. Lett. 165, 187–196 (1999)

    Article  ADS  CAS  Google Scholar 

  28. James, D. E. & Sacks, S. in Geology of Ore Deposits of the Central Andes (ed. Skinner, B. J.) 1–25 (Special Pub. 7, Society of Economic Geologists, Littleton, Colorado, 1999)

    Google Scholar 

Download references

Acknowledgements

This research would not have been possible without the help of our field technician, G. Giordinengo of INGEIS and of B. Narod, whose new generation of MT instruments were used to collect the data and who solved critical instrument problems in the field. We also thank M. Lopez, S. Kay, D. James, S. Constable and S.-I. Karato for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Booker.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information 1

A brief synopsis of analysis of magnetotelluric data for model dimensionality and strike and its application to the data used in the main paper. (PDF 977 kb)

Supplementary Information 2

Plots of the measured data and computed responses of the inversion in pseudosection form (site location versus period). Period is a proxy for depth. (PDF 235 kb)

Supplementary Information 3

The minimum structure models as a function of data misfit. (PDF 344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booker, J., Favetto, A. & Pomposiello, M. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429, 399–403 (2004). https://doi.org/10.1038/nature02565

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02565

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing