Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus

Abstract

Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life1,2,3,4. In the mammalian hippocampus, a region important for spatial and episodic memory5,6, thousands of new granule cells are produced per day7, with the exact number depending on environmental conditions and physical exercise1,8. The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis8,9,10. Although it has been suggested that newly generated neurons may have specific properties to facilitate learning2,10,11, the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca2+ channels can generate isolated Ca2+ spikes and boost fast Na+ action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Newly generated granule cells in adult hippocampus are defined by high input resistance, PSA-NCAM immunoreactivity and immature dendritic morphology.
Figure 2: Young granule cells have distinct active and passive membrane properties.
Figure 3: T-Type Ca2+ channels lead to enhanced excitability in young granule cells.
Figure 4: Different induction rules for long-term potentiation in young and mature neurons.

Similar content being viewed by others

References

  1. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Nottebohm, F. Why are some neurons replaced in adult brain? J. Neurosci. 22, 624–628 (2002)

    Article  CAS  Google Scholar 

  3. Seki, T. & Arai, Y. Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J. Neurosci. 13, 2351–2358 (1993)

    Article  CAS  Google Scholar 

  4. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Lisman, J. E. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22, 233–242 (1999)

    Article  CAS  Google Scholar 

  6. Burgess, N., Maguire, E. A. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002)

    Article  CAS  Google Scholar 

  7. Cameron, H. A. & McKay, R. D. G. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 435, 406–417 (2001)

    Article  CAS  Google Scholar 

  8. van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl Acad. Sci. USA 96, 13427–13431 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Gould, E., Beylin, A., Tanapat, P., Reeves, A. & Shors, T. J. Learning enhances adult neurogenesis in the hippocampal formation. Nature Neurosci. 2, 260–265 (1999)

    Article  CAS  Google Scholar 

  10. Shors, T. J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–376 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Snyder, J. S., Kee, N. & Wojtowicz, J. M. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J. Neurophysiol. 85, 2423–2431 (2001)

    Article  CAS  Google Scholar 

  12. Liu, Y.-B., Lio, P. A., Pasternak, J. F. & Trommer, B. L. Developmental changes in membrane properties and postsynaptic currents of granule cells in rat dentate gyrus. J. Neurophysiol. 76, 1074–1088 (1996)

    Article  CAS  Google Scholar 

  13. Seki, T. Hippocampal adult neurogenesis occurs in a microenvironment provided by PSA-NCAM-expressing immature neurons. J. Neurosci. Res. 69, 772–783 (2002)

    Article  CAS  Google Scholar 

  14. Seki, T. Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J. Neurosci. Res. 70, 327–334 (2002)

    Article  CAS  Google Scholar 

  15. Lübbers, K. & Frotscher, M. Differentiation of granule cells in relation to GABAergic neurons in the rat fascia dentata. Combined Golgi/EM and immunocytochemical studies. Anat. Embryol. 178, 119–127 (1988)

    Article  Google Scholar 

  16. Rihn, L. L. & Claiborne, B. J. Dendritic growth and regression in rat dentate granule cells during late postnatal development. Dev. Brain Res. 54, 115–124 (1990)

    Article  CAS  Google Scholar 

  17. Rao, M. S. & Shetty, A. K. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur. J. Neurosci. 19, 234–246 (2004)

    Article  Google Scholar 

  18. Jonas, P., Bischofberger, J., Fricker, D. & Miles, R. Interneuron diversity series: Fast in, fast out—temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci. 27, 30–40 (2004)

    Article  CAS  Google Scholar 

  19. Liu, S. et al. Generation of functional inhibitory neurons in the adult rat hippocampus. J. Neurosci. 23, 732–736 (2003)

    Article  Google Scholar 

  20. Spruston, N. & Johnston, D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67, 508–529 (1992)

    Article  CAS  Google Scholar 

  21. Spruston, N., Jonas, P. & Sakmann, B. Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. (Lond.) 482, 325–352 (1995)

    Article  CAS  Google Scholar 

  22. Eliot, L. S. & Johnston, D. Multiple components of calcium current in acutely dissociated dentate gyrus granule neurons. J. Neurophysiol. 72, 762–777 (1994)

    Article  CAS  Google Scholar 

  23. Blaxter, T. J., Carlen, P. L. & Niesen, C. Pharmacological and anatomical separation of calcium currents in rat dentate granule neurones in vitro. J. Physiol. (Lond.) 412, 93–112 (1989)

    Article  CAS  Google Scholar 

  24. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal CA3–CA1 cell pairs in vitro. Proc. Natl Acad. Sci. USA 93, 11225–11230 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997)

    Article  CAS  Google Scholar 

  26. Normann, C. et al. Associative long-term depression in the hippocampus is dependent on postsynaptic N-type Ca2+ channels. J. Neurosci. 20, 8290–8297 (2000)

    Article  CAS  Google Scholar 

  27. Jung, M. W. & McNaughton, B. L. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3, 165–182 (1993)

    Article  CAS  Google Scholar 

  28. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996)

    Article  CAS  Google Scholar 

  29. Pike, F. G., Meredith, R. M., Olding, A. W. A. & Paulsen, O. Postsynaptic bursting is essential for ‘Hebbian’ induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J. Physiol. (Lond.) 518, 571–576 (1999)

    Article  CAS  Google Scholar 

  30. Dayer, A. G., Ford, A. A., Cleaver, K. M., Yassaee, M. & Cameron, H. A. Short-term and long-term survival of new neurons in the rat dentate gyrus. J. Comp. Neurol. 460, 563–572 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Frotscher, E. Förster and G. Stuart for critically reading the manuscript, and K. Winterhalter and A. Blomenkamp for technical assistance. Work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Bischofberger.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187 (2004). https://doi.org/10.1038/nature02553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02553

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing