Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic

A Corrigendum to this article was published on 12 May 2005


The role of iron in enhancing phytoplankton productivity in high nutrient, low chlorophyll oceanic regions was demonstrated first through iron-addition bioassay experiments1 and subsequently confirmed by large-scale iron fertilization experiments2. Iron supply has been hypothesized to limit nitrogen fixation and hence oceanic primary productivity on geological timescales3, providing an alternative to phosphorus as the ultimate limiting nutrient4. Oceanographic observations have been interpreted both to confirm and refute this hypothesis5,6, but direct experimental evidence is lacking7. We conducted experiments to test this hypothesis during the Meteor 55 cruise to the tropical North Atlantic. This region is rich in diazotrophs8 and strongly impacted by Saharan dust input9. Here we show that community primary productivity was nitrogen-limited, and that nitrogen fixation was co-limited by iron and phosphorus. Saharan dust addition stimulated nitrogen fixation, presumably by supplying both iron and phosphorus10,11. Our results support the hypothesis that aeolian mineral dust deposition promotes nitrogen fixation in the eastern tropical North Atlantic.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Effect of nutrient additions during bioassay experiments.


  1. Martin, J. H. & Fitzwater, S. E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331, 341–343 (1988)

    ADS  CAS  Article  Google Scholar 

  2. Boyd, P. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000)

    ADS  CAS  Article  Google Scholar 

  3. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997)

    ADS  CAS  Article  Google Scholar 

  4. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999)

    ADS  CAS  Article  Google Scholar 

  5. Sanudo-Wilhelmy, S. A. et al. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411, 66–69 (2001)

    ADS  CAS  Article  Google Scholar 

  6. Wu, J., Sunda, W., Boyle, E. A. & Karl, D. M. Phosphate depletion in the Western North Atlantic Ocean. Science 289, 759–762 (2000)

    ADS  CAS  Article  Google Scholar 

  7. Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003)

    ADS  CAS  Article  Google Scholar 

  8. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant cyanobacterium. Science 276, 1221–1229 (1997)

    CAS  Article  Google Scholar 

  9. Gao, Y., Kaufman, Y. J., Tanre, D., Kolber, D. & Falkowski, P. G. Seasonal distributions of aeolian iron fluxes to the global ocean. Geophys. Res. Lett. 28, 29–32 (2001)

    ADS  CAS  Article  Google Scholar 

  10. Guieu, C., Loye-Pilot, M. D., Ridame, C. & Thomas, C. Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. J. Geophys. Res. Atmos. 107, 4258 (2002)

    ADS  Article  Google Scholar 

  11. Ridame, C. & Guieu, C. Saharan input of phosphate to the oligotrophic water of the open western Mediterranean Sea. Limnol. Oceanogr. 47, 856–869 (2002)

    ADS  CAS  Article  Google Scholar 

  12. Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958)

    CAS  Google Scholar 

  13. Graziano, L. M., Geider, R. J., Li, W. K. W. & Olaizola, M. Nitrogen limitation of North Atlantic phytoplankton: Analysis of physiological condition in nutrient enrichment experiments. Aquat. Microb. Ecol. 11, 53–64 (1996)

    Article  Google Scholar 

  14. Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. & Falkowski, P. G. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 46, 1249–1260 (2001)

    ADS  CAS  Article  Google Scholar 

  15. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997)

    ADS  CAS  Article  Google Scholar 

  16. Tyrrell, T. et al. Large-scale latitudinal distribution of Trichodesmium spp. in the Atlantic Ocean. J. Plankton Res. 25, 405–416 (2003)

    CAS  Article  Google Scholar 

  17. Palinska, K. A. et al. The signal transducer P-II and bicarbonate acquisition in Prochlorococcus marinus PCC 9511, a marine cyanobacterium naturally deficient in nitrate and nitrite assimilation. Microbiology 148, 2405–2412 (2002)

    CAS  Article  Google Scholar 

  18. Montoya, J. P., Voss, M., Kähler, P. & Capone, D. G. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl. Environ. Microbiol. 62, 986–993 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lohrenz, S. et al. A comparison of in situ and simulated in situ methods for estimating primary production. J. Plankton Res. 14, 201–221 (1992)

    Article  Google Scholar 

  20. Welschmeyer, N. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 38, 1985–1992 (1994)

    ADS  Article  Google Scholar 

  21. Zehr, J. P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638 (2001)

    ADS  CAS  Article  Google Scholar 

  22. Ammerman, J. W., Hood, R. R., Case, D. A. & Cotner, J. B. Phosphorus deficiency in the Atlantic: An emerging paradigm in oceanography. EOS Trans. Am. Geophys. Union 84, 165–170 (2003)

    ADS  Article  Google Scholar 

  23. Coale, K. H., Fitzwater, S. E., Gordon, R. M., Johnson, K. S. & Barber, R. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature 379, 621–624 (1996)

    ADS  CAS  Article  Google Scholar 

  24. Wu, J. F. et al. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochem. Cycles 17, 1008 (2003)

    ADS  Google Scholar 

  25. Kustka, A., Sañudo-Wilhelmy, S., Carpenter, E. J., Capone, D. G. & Raven, J. A. A revised estimate of the iron use efficiency of nitrogen fixation, with special reference to the marine cyanobacterium Trichodesmium spp. (Cyanophyta). J. Phycol. 39, 12–25 (2003)

    CAS  Article  Google Scholar 

  26. Rue, E. & Bruland, K. Complexation of Fe(III) by natural ligands in the central north Pacific as determined by a new competitive ligand equilibrium/absorptive cathodic voltammetry method. Mar. Chem. 50, 117–138 (1995)

    CAS  Article  Google Scholar 

  27. Kustka, A. et al. Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS 101): Comparison with nitrogen fixation rates and iron: carbon ratios of field populations. Limnol. Oceanogr. 48, 1869–1884 (2003)

    ADS  CAS  Article  Google Scholar 

  28. Mahowald, N. et al. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. Atmos. 104, 15895–15916 (1999)

    ADS  Article  Google Scholar 

  29. Karl, D. et al. Dinitrogen fixation in the world's oceans. Biogeochemistry 57, 47–98 (2002)

    Article  Google Scholar 

  30. Glibert, P. M. & Bronk, D. A. Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp. Appl. Environ. Microbiol. 60, 3996–4000 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We would like to acknowledge the captain and crew of the F/S Meteor and the scientists aboard the Meteor 55 SOLAS cruise, especially D. Wallace, K. Lochte, H. Bange, P. Croot, M. Voss, F. Malien, R. Langlois and P. Fritsche. We thank D. Wallace for insightful comments on this manuscript. Additionally, we acknowledge W. Balzer for loaning the clean container used during M55. This work was supported by the Deutsche Forschungsgemeinschaft's Meteor Schwerpunktprogramm, a Natural Environment Research Council grant to R.J.G., and a Marie Curie Post Doctoral fellowship to C.R. Authors' contributions  The first three authors made equal contributions to the success of the experiments. This manuscript is the product of an equal collaboration between the groups of J.L. at IfM-Geomar and R.J.G. at University of Essex.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Richard J. Geider.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Discussion

Contains results, Supplementary Table S1, Supplementary Figures S1 to S3 and references (DOC 108 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mills, M., Ridame, C., Davey, M. et al. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing