Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tonks–Girardeau gas of ultracold atoms in an optical lattice

Abstract

Strongly correlated quantum systems are among the most intriguing and fundamental systems in physics. One such example is the Tonks–Girardeau gas1,2, proposed about 40 years ago, but until now lacking experimental realization; in such a gas, the repulsive interactions between bosonic particles confined to one dimension dominate the physics of the system. In order to minimize their mutual repulsion, the bosons are prevented from occupying the same position in space. This mimics the Pauli exclusion principle for fermions, causing the bosonic particles to exhibit fermionic properties1,2. However, such bosons do not exhibit completely ideal fermionic (or bosonic) quantum behaviour; for example, this is reflected in their characteristic momentum distribution3. Here we report the preparation of a Tonks–Girardeau gas of ultracold rubidium atoms held in a two-dimensional optical lattice formed by two orthogonal standing waves. The addition of a third, shallower lattice potential along the long axis of the quantum gases allows us to enter the Tonks–Girardeau regime by increasing the atoms' effective mass and thereby enhancing the role of interactions. We make a theoretical prediction of the momentum distribution based on an approach in which trapped bosons acquire fermionic properties, finding that it agrees closely with the measured distribution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental sequence and momentum profiles.
Figure 2: Momentum profiles of the 1D quantum gases for different axial lattice depths.
Figure 3: Momentum profiles of a single 1D tube obtained from our fermionization-based theory for different lattice depths.

Similar content being viewed by others

References

  1. Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  2. Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. Lenard, A. Momentum distribution in the ground state of the one-dimensional system of impenetrable bosons. J. Math. Phys. 5, 930–943 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  4. Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Dunjko, V., Lorent, V. & Olshanii, M. Bosons in cigar-shaped traps: Thomas-Fermi regime, Tonks-Girardeau regime, and in between. Phys. Rev. Lett. 86, 5413–5416 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Jochim, S. et al. Bose-Einstein condensation of molecules. Science 302, 2101–2103 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Greiner, M., Regal, C. & Jin, D. S. Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Zwierlein, M. W. et al. Observation of Bose-Einstein condensation of molecules. Phys. Rev. Lett. 91, 250401 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Regal, C., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Olshanii, M. Atomic scattering in the presence of an external confinement. Phys. Rev. Lett. 81, 938–941 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Goerlitz, A. et al. Realization of Bose-Einstein condensates in lower dimensions. Phys. Rev. Lett. 87, 130402 (2001)

    Article  ADS  Google Scholar 

  12. Schreck, F. et al. A quasipure Bose-Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett. 87, 080403 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Greiner, M., Bloch, I., Mandel, O., Hänsch, T. W. & Esslinger, T. Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Moritz, H., Stöferle, T., Köhl, M. & Esslinger, T. Exciting collective oscillations in a trapped 1D gas. Phys. Rev. Lett. 91, 250402 (2003)

    Article  ADS  Google Scholar 

  15. Laburthe Tolra, B., et al. Observation of reduced three-body recombination in a fermionized 1D Bose gas. Preprint at 〈http://xxx.lanl.gov/cond-mat/0312003〉 (2003)

  16. Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004)

    Article  ADS  Google Scholar 

  17. Efetov, K. B. & Larkin, A. I. Correlation functions in one-dimensional systems with strong interactions. Sov. Phys. JETP 42, 390–396 (1976)

    ADS  Google Scholar 

  18. Korepin, V. E., Bogoliubov, N. M. & Izergin, A. G. Quantum Inverse Scattering Method and Correlation Functions (Cambridge Univ. Press, Cambridge, 1993)

    Book  Google Scholar 

  19. Ovchinnikov, Y. B. et al. Diffraction of a released Bose-Einstein condensate by a pulsed standing light wave. Phys. Rev. Lett. 83, 284–287 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Astrakharchik, G. E. & Giorgini, S. Correlation functions and momentum distributions of one-dimensional Bose systems. Phys. Rev. A 68, 031602 (2003)

    Article  ADS  Google Scholar 

  21. Olshanii, M. & Dunjko, V. Short-distance correlation properties of the Lieb-Liniger system and momentum distributions of trapped one-dimensional atomic gases. Phys. Rev. Lett. 91, 090401 (2003)

    Article  ADS  Google Scholar 

  22. Cazalilla, M. A. Bosonizing one-dimensional cold atomic gases. J. Phys. B 37, S1–S47 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

    Article  ADS  CAS  Google Scholar 

  24. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Kollath, C., Schollwöck, U., von Delft, J. & Zwerger, W. Spatial correlations of trapped one-dimensional bosons in an optical lattice. Phys. Rev. A 69, 031601 (2004)

    Article  ADS  Google Scholar 

  27. Richard, S. et al. Momentum spectroscopy of 1D phase fluctuations in Bose-Einstein condensates. Phys. Rev. Lett. 91, 010405 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Gangardt, D. M. & Shlyapnikov, G. V. Stability and phase coherence of trapped 1D Bose gases. Phys. Rev. Lett. 90, 010401 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Paredes, B. & Cirac, J. I. From Cooper pairs to Luttinger liquids with bosonic atoms in optical lattices. Phys. Rev. Lett. 90, 150402 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank F. Gerbier, D. Gangardt and M. Olshanii for discussions, and M. Greiner for help in setting up the experiment. I.B. also acknowledges support from AFOSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immanuel Bloch.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

All twelve experimentally measured momentum profiles including comparison with our Fermionization based theory and comparison to calculations for ideal Bose and Fermi gases. (DOC 830 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paredes, B., Widera, A., Murg, V. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004). https://doi.org/10.1038/nature02530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02530

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing