Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A conformational switch controls hepatitis delta virus ribozyme catalysis

Abstract

Ribozymes enhance chemical reaction rates using many of the same catalytic strategies as protein enzymes. In the hepatitis delta virus (HDV) ribozyme, site-specific self-cleavage of the viral RNA phosphodiester backbone1,2,3 requires both divalent cations and a cytidine nucleotide4,5,6. General acid–base catalysis7,8,9,10,11,12, substrate destabilization1,13 and global and local conformational changes14,15 have all been proposed to contribute to the ribozyme catalytic mechanism. Here we report ten crystal structures of the HDV ribozyme in its pre-cleaved state, showing that cytidine is positioned to activate the 2′-OH nucleophile in the precursor structure. This observation supports its proposed role as a general base in the reaction mechanism. Comparison of crystal structures of the ribozyme in the pre- and post-cleavage states reveals a significant conformational change in the RNA after cleavage and that a catalytically critical divalent metal ion from the active site is ejected. The HDV ribozyme has remarkable chemical similarity to protein ribonucleases and to zymogens for which conformational dynamics are integral to biological activity. This finding implies that RNA structural rearrangements control the reactivity of ribozymes and ribonucleoprotein enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Precursor HDV ribozyme crystal structure.
Figure 2: Conformational changes in the active site accompany HDV ribozyme cleavage.
Figure 3: Proposed mechanism for general acid–base catalysis in the HDV ribozyme.

Similar content being viewed by others

References

  1. Shih, I. H. & Been, M. D. Catalytic strategies of the hepatitis delta virus ribozymes. Annu. Rev. Biochem. 71, 887–917 (2002)

    Article  CAS  Google Scholar 

  2. Rosenstein, S. P. & Been, M. D. Self-cleavage of hepatitis delta virus genomic strand RNA is enhanced under partially denaturing conditions. Biochemistry 29, 8011–8016 (1990)

    Article  CAS  Google Scholar 

  3. Reid, C. E. & Lazinski, D. W. A host-specific function is required for ligation of a wide variety of ribozyme-processed RNAs. Proc. Natl Acad. Sci. USA 97, 424–429 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Suh, Y. A., Kumar, P. K., Taira, K. & Nishikawa, S. Self-cleavage activity of the genomic HDV ribozyme in the presence of various divalent metal ions. Nucleic Acids Res. 21, 3277–3280 (1993)

    Article  CAS  Google Scholar 

  5. Nakano, S., Proctor, D. J. & Bevilacqua, P. C. Mechanistic characterization of the HDV genomic ribozyme: assessing the catalytic and structural contributions of divalent metal ions within a multichannel reaction mechanism. Biochemistry 40, 12022–12038 (2001)

    Article  CAS  Google Scholar 

  6. Tanner, N. K. et al. A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses. Curr. Biol. 4, 488–498 (1994)

    Article  CAS  Google Scholar 

  7. Ferre-D'Amare, A. R., Zhou, K. & Doudna, J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Ferre-D'Amare, A. R. & Doudna, J. A. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J. Mol. Biol. 295, 541–556 (2000)

    Article  CAS  Google Scholar 

  9. Oyelere, A. K., Kardon, J. R. & Strobel, S. A. pK(a) perturbation in genomic Hepatitis Delta Virus ribozyme catalysis evidenced by nucleotide analogue interference mapping. Biochemistry 41, 3667–3675 (2002)

    Article  CAS  Google Scholar 

  10. Perrotta, A. T., Shih, I. & Been, M. D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286, 123–126 (1999)

    Article  CAS  Google Scholar 

  11. Shih, I. H. & Been, M. D. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage. Proc. Natl Acad. Sci. USA 98, 1489–1494 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Nakano, S., Chadalavada, D. M. & Bevilacqua, P. C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287, 1493–1497 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Shih, I. & Been, M. D. Energetic contribution of non-essential 5′ sequence to catalysis in a hepatitis delta virus ribozyme. EMBO J. 20, 4884–4891 (2001)

    Article  CAS  Google Scholar 

  14. Pereira, M. J., Harris, D. A., Rueda, D. & Walter, N. G. Reaction pathway of the trans-acting hepatitis delta virus ribozyme: a conformational change accompanies catalysis. Biochemistry 41, 730–740 (2002)

    Article  CAS  Google Scholar 

  15. Harris, D. A., Rueda, D. & Walter, N. G. Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis. Biochemistry 41, 12051–12061 (2002)

    Article  CAS  Google Scholar 

  16. Perrotta, A. T. & Been, M. D. A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature 350, 434–436 (1991)

    Article  ADS  CAS  Google Scholar 

  17. Jeong, S., Sefcikova, J., Tinsley, R. A., Rueda, D. & Walter, N. G. Trans-acting hepatitis delta virus ribozyme: catalytic core and global structure are dependent on the 5′ substrate sequence. Biochemistry 42, 7727–7740 (2003)

    Article  CAS  Google Scholar 

  18. Pyle, A. M. Metal ions in the structure and function of RNA. J. Biol. Inorg. Chem. 7, 679–690 (2002)

    Article  CAS  Google Scholar 

  19. Oyelere, A. K. & Strobel, S. A. Site specific incorporation of 6-azauridine into the genomic HDV ribozyme active site. Nucleosides Nucleotides Nucleic Acids 20, 1851–1858 (2001)

    Article  CAS  Google Scholar 

  20. Chai, J. et al. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107, 399–407 (2001)

    Article  CAS  Google Scholar 

  21. Rupert, P. B. & Ferre-D'Amare, A. R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Rupert, P. B., Massey, A. P., Sigurdsson, S. T. & Ferre-D'Amare, A. R. Transition state stabilization by a catalytic RNA. Science 298, 1421–1424 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Murray, J. B., Dunham, C. M. & Scott, W. G. A pH-dependent conformational change, rather than the chemical step, appears to be rate-limiting in the hammerhead ribozyme cleavage reaction. J. Mol. Biol. 315, 121–130 (2002)

    Article  CAS  Google Scholar 

  24. Dunham, C. M., Murray, J. B. & Scott, W. G. A helical twist-induced conformational switch activates cleavage in the hammerhead ribozyme. J. Mol. Biol. 332, 327–336 (2003)

    Article  CAS  Google Scholar 

  25. Luptak, A., Ferre-D'Amare, A. R., Zhou, K., Zilm, K. W. & Doudna, J. A. Direct pK(a) measurement of the active-site cytosine in a genomic hepatitis delta virus ribozyme. J. Am. Chem. Soc. 123, 8447–8452 (2001)

    Article  CAS  Google Scholar 

  26. Moore, M. J. & Query, C. C. Joining of RNAs by splinted ligation. Methods Enzymol. 317, 109–123 (2000)

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  28. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  29. Brunger, A. T. et al. Crystallography and NMR System: A new software suite for macromolecular structure determination. Acta Cryst. D. 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  30. Collaborative Computational Project, The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D. 50, 760–763 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

Diffraction data for this study were measured with the guidance of C. Ralston, J. Holton and co-workers. We thank M. Been, K. Karbstein, J. Piccirilli, R. Spanggord and N. Walter for comments on the manuscript and for sharing unpublished data. This work was supported in part by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Doudna.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table S1

Crystallography statistics for ten structures of the wild type and C75U mutant precursor forms of the hepatitis delta virus (HDV) ribozyme. (DOC 61 kb)

Supplementary Figure S1

Identification of a metal ion in the wild type precursor ribozyme active site. (PPT 428 kb)

Supplementary Figure S2

Competitive inhibition of C75U mutant ribozyme reactivity by cobalt hexammine. (PPT 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, A., Zhou, K., Ding, F. et al. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429, 201–205 (2004). https://doi.org/10.1038/nature02522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02522

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing