Activity-dependent homeostatic specification of transmitter expression in embryonic neurons

Abstract

Neurotransmitters are essential for interneuronal signalling, and the specification of appropriate transmitters in differentiating neurons has been related to intrinsic neuronal identity and to extrinsic signalling proteins. Here we show that altering the distinct patterns of Ca2+ spike activity spontaneously generated by different classes of embryonic spinal neurons in vivo changes the transmitter that neurons express without affecting the expression of markers of cell identity. Regulation seems to be homeostatic: suppression of activity leads to an increased number of neurons expressing excitatory transmitters and a decreased number of neurons expressing inhibitory transmitters; the reverse occurs when activity is enhanced. The imposition of specific spike frequencies in vitro does not affect labels of cell identity but again specifies the expression of transmitters that are inappropriate for the markers they express, during an early critical period. The results identify a new role of patterned activity in development of the central nervous system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ca2+ spike activity of four classes of neurons imaged in the embryonic spinal cord.
Figure 2: Suppression of spike activity in vivo by overexpression of inward rectifier K+ channels increases the incidence of expression of glutamatergic and cholinergic phenotypes.
Figure 3: Enhancement of spike activity in vivo by overexpression of voltage-gated Na+ channels decreases the incidence of glutamatergic and cholinergic phenotypes. rNav2aαβ transcripts and fluorescent tracer were injected together into one or both blastomeres at the two-cell stage, followed by imaging and immunocytochemistry as in Fig. 2.
Figure 4: Pharmacological in vivo suppression of spikes with Ca2+ and Na+ channel blockers or enhancement of spikes with the Na+ channel agonist veratridine enhances or suppresses Glu-IR and ChAT-IR, respectively.
Figure 5: Suppression or enhancement of spike activity in vivo causes homeostatic superposition or replacement of one transmitter with another.
Figure 6: Regulation of spike frequency in vitro drives novel expression of neurotransmitters.
Figure 7: Neurotransmitters expressed after alterations in Ca2+ spike activity are functionally released.
Figure 8: Critical periods for Ca2+ spike-dependent regulation of transmitter expression in vitro.

References

  1. 1

    Snyder, S. H. & Ferris, C. D. Novel neurotransmitters and their neuropsychiatric relevance. Am. J. Psychiatry 157, 1738–1751 (2000)

    CAS  Article  PubMed Central  Google Scholar 

  2. 2

    Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H. & Lindholm, D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9, 3545–3550 (1990)

    CAS  Article  PubMed Central  Google Scholar 

  3. 3

    Tanabe, Y., William, C. & Jessell, T. M. Specification of motor neuron identity by the MNR2 homeodomain protein. Cell 95, 67–80 (1998)

    CAS  Article  PubMed Central  Google Scholar 

  4. 4

    Thaler, J. P., Lee, S. K., Jurata, L. W., Gill, G. N. & Pfaff, S. L. LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell 110, 237–249 (2002)

    CAS  Article  PubMed Central  Google Scholar 

  5. 5

    Pierani, A. et al. Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron 29, 367–384 (2001)

    CAS  Article  PubMed Central  Google Scholar 

  6. 6

    Jin, Y., Hoskins, R. & Horvitz, H. R. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372, 780–783 (1994)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  7. 7

    Thor, S. & Thomas, J. B. The Drosophila islet gene governs axon pathfinding and neurotransmitter identity. Neuron 18, 397–409 (1997)

    CAS  Article  PubMed Central  Google Scholar 

  8. 8

    Furshpan, E. J., MacLeish, P. R., O'Lague, P. H. & Potter, D. D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc. Natl Acad. Sci. USA 73, 4225–4229 (1976)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  9. 9

    Landis, S. C. & Keefe, D. Evidence for neurotransmitter plasticity in vivo: developmental changes in properties of cholinergic sympathetic neurons. Dev. Biol. 98, 349–372 (1983)

    CAS  Article  PubMed Central  Google Scholar 

  10. 10

    Nawa, H. & Patterson, P. H. Separation and partial characterization of neuropeptide-inducing factors in heart cell conditioned medium. Neuron 4, 269–277 (1990)

    CAS  Article  PubMed Central  Google Scholar 

  11. 11

    Walicke, P. A. & Patterson, P. H. On the role of Ca2+ in the transmitter choice made by cultured sympathetic neurons. J. Neurosci. 1, 343–350 (1981)

    CAS  Article  PubMed Central  Google Scholar 

  12. 12

    Rao, M. S., Tyrrell, S., Landis, S. C. & Patterson, P. H. Effects of ciliary neurotrophic factor (CNTF) and depolarization on neuropeptide expression in cultured sympathetic neurons. Dev. Biol. 150, 281–293 (1992)

    CAS  Article  PubMed Central  Google Scholar 

  13. 13

    Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  14. 14

    Watt, S. D., Gu, X., Smith, R. D. & Spitzer, N. C. Specific frequencies of spontaneous Ca2+ transients upregulate GAD 67 transcripts in embryonic spinal neurons. Mol. Cell. Neurosci. 16, 376–387 (2000)

    CAS  Article  PubMed Central  Google Scholar 

  15. 15

    Hartenstein, V. Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord. J. Comp. Neurol. 328, 213–231 (1993)

    CAS  Article  PubMed Central  Google Scholar 

  16. 16

    Li, W. C. et al. Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles. J. Comp. Neurol. 441, 248–265 (2001)

    CAS  Article  PubMed Central  Google Scholar 

  17. 17

    Hanson, M. G. & Landmesser, L. T. Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. J. Neurosci. 23, 587–600 (2003)

    CAS  Article  PubMed Central  Google Scholar 

  18. 18

    Gu, X., Olson, E. C. & Spitzer, N. C. Spontaneous neuronal calcium spikes and waves during early differentiation. J. Neurosci. 14, 6325–6335 (1994)

    CAS  Article  PubMed Central  Google Scholar 

  19. 19

    Somasekhar, T. & Nordlander, R. H. Selective early innervation of a subset of epidermal cells in Xenopus may be mediated by chondroitin sulfate proteoglycans. Dev. Brain Res. 99, 208–215 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999)

    CAS  Article  PubMed Central  Google Scholar 

  21. 21

    Bernhardt, R. R., Patel, C. K., Wilson, S. W. & Kuwada, J. Y. Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. J. Comp. Neurol. 326, 263–272 (1992)

    CAS  Article  PubMed Central  Google Scholar 

  22. 22

    Appel, B. et al. Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. Development 121, 4117–4125 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Taira, M., Hayes, W. P., Otani, H. & Dawid, I. B. Expression of LIM class homeobox gene Xlim-3 in Xenopus development is limited to neural and neuroendocrine tissues. Dev. Biol. 159, 245–256 (1993)

    Article  PubMed Central  Google Scholar 

  24. 24

    Schneider, C., Wicht, H., Enderich, J., Wegner, M. & Rohrer, H. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24, 861–867 (1999)

    CAS  Article  PubMed Central  Google Scholar 

  25. 25

    Gorbunova, Y. V. & Spitzer, N. C. Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes. Nature 418, 93–96 (2002)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  26. 26

    Bixby, J. L. & Spitzer, N. C. The appearance and development of neurotransmitter sensitivity in Xenopus embryonic spinal neurons in vitro. J. Physiol. (Lond.) 353, 143–155 (1984)

    CAS  Article  Google Scholar 

  27. 27

    Henderson, L. P., Smith, M. A. & Spitzer, N. C. The absence of calcium blocks impulse-evoked release of acetylcholine but not de novo formation of functional neuromuscular synaptic contacts in culture. J. Neurosci. 4, 3140–3150 (1984)

    CAS  Article  PubMed Central  Google Scholar 

  28. 28

    Hubel, D. H. & Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970)

    CAS  Article  Google Scholar 

  29. 29

    Ribera, A. B. & Spitzer, N. C. A critical period of transcription required for differentiation of the action potential of spinal neurons. Neuron 2, 1055–1062 (1989)

    CAS  Article  PubMed Central  Google Scholar 

  30. 30

    Somogyi, R., Wen, X., Ma, W. & Barker, J. L. Developmental kinetics of GAD family mRNAs parallel neurogenesis in the rat spinal cord. J. Neurosci. 15, 2575–2591 (1995)

    CAS  Article  PubMed Central  Google Scholar 

  31. 31

    Jonas, P., Bischofberger, J. & Sandkuhler, J. Corelease of two fast neurotransmitters at a central synapse. Science 281, 419–424 (1998)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  32. 32

    Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003)

    CAS  Article  Google Scholar 

  33. 33

    Turrigiano, G. G. & Nelson, S. B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000)

    CAS  Article  PubMed Central  Google Scholar 

  34. 34

    Marek, K. W. et al. A genetic analysis of synaptic development: pre- and postsynaptic dCBP control transmitter release at the Drosophila NMJ. Neuron 25, 537–547 (2000)

    CAS  Article  PubMed Central  Google Scholar 

  35. 35

    Chub, N. & O'Donovan, M. J. Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo. J. Neurosci. 18, 294–306 (1998)

    CAS  Article  PubMed Central  Google Scholar 

  36. 36

    Milner, L. D. & Landmesser, L. T. Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J. Neurosci. 19, 3007–3022 (1999)

    CAS  Article  PubMed Central  Google Scholar 

  37. 37

    Gutierrez, R. et al. Plasticity of the GABAergic phenotype of the ‘glutamatergic’ granule cells of the rat dentate gyrus. J. Neurosci. 23, 5594–5598 (2003)

    CAS  Article  Google Scholar 

  38. 38

    Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000)

    CAS  Article  Google Scholar 

  39. 39

    Brosenitsch, T. A. & Katz, D. M. Expression of Phox2 transcription factors and induction of the dopaminergic phenotype in primary sensory neurons. Mol. Cell. Neurosci. 20, 447–457 (2002)

    CAS  Article  Google Scholar 

  40. 40

    Groves, A. K. et al. Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development 121, 887–901 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 (1999)

    CAS  Article  PubMed Central  Google Scholar 

  42. 42

    Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002)

    CAS  Article  PubMed Central  Google Scholar 

  43. 43

    Okada, T., Katsuyama, Y., Ono, F. & Okamura, Y. The development of three identified motor neurons in the larva of an ascidian, Halocynthia roretzi. Dev. Biol. 244, 278–292 (2002)

    CAS  Article  PubMed Central  Google Scholar 

  44. 44

    DeFazio, R. A., Pong, K., Knusel, B. & Walsh, J. P. Neurotrophin-4/5 promotes dendritic outgrowth and calcium currents in cultured mesencephalic dopamine neurons. Neuroscience 99, 297–304 (2000)

    CAS  Article  PubMed Central  Google Scholar 

  45. 45

    Li, W., Llopis, J., Whitney, M., Zlokarnik, G. & Tsien, R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941 (1998)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  46. 46

    West, A. E., Griffith, E. C. & Greenberg, M. E. Regulation of transcription factors by neuronal activity. Nature Rev. Neurosci. 3, 921–931 (2002)

    CAS  Article  Google Scholar 

  47. 47

    Young, S. H. & Poo, M. M. Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 305, 634–637 (1983)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  48. 48

    Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M. M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 (1994)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  49. 49

    Xiang, Y. et al. Nerve growth cone guidance mediated by G protein-coupled receptors. Nature Neurosci. 5, 843–848 (2002)

    CAS  Article  PubMed Central  Google Scholar 

  50. 50

    Diefenbach, T. J., Sloley, B. D. & Goldberg, J. I. Neurite branch development of an identified serotonergic neuron from embryonic Helisoma: evidence for autoregulation by serotonin. Dev. Biol. 167, 282–293 (1995)

    CAS  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Berg, D. Feldman, M. Feller and A. Ghosh for comments on the manuscript, T. Jessell for discussions, and I-T. Hsieh for technical support. This work was supported by a grant to N.C.S. from the National Institutes of Health. S.B.S. was supported by the NSF and Merck.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura N. Borodinsky.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Coactively spiking clusters of MNs in the embryonic neural tube.

Supplementary Figure 2

The cellular organization of the neural tube appears normal following bilateral suppression of Ca2+ spike activity.

Supplementary Figure Legends

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borodinsky, L., Root, C., Cronin, J. et al. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429, 523–530 (2004). https://doi.org/10.1038/nature02518

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.