Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aquaporin-0 membrane junctions reveal the structure of a closed water pore

Abstract

The lens-specific water pore aquaporin-0 (AQP0) is the only aquaporin known to form membrane junctions in vivo1. We show here that AQP0 from the lens core, containing some carboxy-terminally cleaved AQP02,3, forms double-layered crystals that recapitulate in vivo junctions. We present the structure of the AQP0 membrane junction as determined by electron crystallography. The junction is formed by three localized interactions between AQP0 molecules in adjoining membranes, mainly mediated by proline residues conserved in AQP0s from different species but not present in most other aquaporins. Whereas all previously determined aquaporin structures show the pore in an open conformation4,5,6,7,8,9, the water pore is closed in AQP0 junctions. The water pathway in AQP0 also contains an additional pore constriction, not seen in other known aquaporin structures4,5,6,7,8,9, which may be responsible for pore gating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double-layered two-dimensional crystals of AQP0.
Figure 2: The AQP0-mediated membrane junction.
Figure 3: The closed AQP0 water pore.

Similar content being viewed by others

References

  1. Costello, M. J., McIntosh, T. J. & Robertson, J. D. Distribution of gap junctions and square array junctions in the mammalian lens. Invest. Ophthalmol. Vis. Sci. 30, 975–989 (1989)

    CAS  PubMed  Google Scholar 

  2. Takemoto, L., Takehana, M. & Horwitz, J. Covalent changes in MIP26K during aging of the human lens membrane. Invest. Ophthalmol. Vis. Sci. 27, 443–446 (1986)

    CAS  PubMed  Google Scholar 

  3. Roy, D., Spector, A. & Farnsworth, P. N. Human lens membrane: comparison of major intrinsic polypeptides from young and old lenses isolated by a new methodology. Exp. Eye Res. 28, 353–358 (1979)

    Article  CAS  Google Scholar 

  4. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Ren, G., Reddy, V. S., Cheng, A., Melnyk, P. & Mitra, A. K. Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc. Natl Acad. Sci. USA 98, 1398–1403 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Tajkhorshid, E. et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525–530 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Savage, D. F., Egea, P. F., Robles-Colmenares, Y., O'Connell, J. D. III & Stroud, R. M. Architecture and selectivity in aquaporins: 2.5Å X-ray structure of aquaporin Z. PLoS Biol. 1, 334–340 (2003)

    Article  CAS  Google Scholar 

  10. Agre, P. et al. Aquaporin water channels–from atomic structure to clinical medicine. J. Physiol. (Lond.) 542, 3–16 (2002)

    Article  CAS  Google Scholar 

  11. Chandy, G., Zampighi, G. A., Kreman, M. & Hall, J. E. Comparison of the water transporting properties of MIP and AQP1. J. Membr. Biol. 159, 29–39 (1997)

    Article  CAS  Google Scholar 

  12. Nemeth-Cahalan, K. L. & Hall, J. E. pH and calcium regulate the water permeability of aquaporin 0. J. Biol. Chem. 275, 6777–6782 (2000)

    Article  CAS  Google Scholar 

  13. Tournaire-Roux, C. et al. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425, 393–397 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Mathias, R. T., Rae, J. L. & Baldo, G. J. Physiological properties of the normal lens. Physiol. Rev. 77, 21–50 (1997)

    Article  CAS  Google Scholar 

  15. Donaldson, P., Kistler, J. & Mathias, R. T. Molecular solutions to mammalian lens transparency. News Physiol. Sci. 16, 118–123 (2001)

    CAS  PubMed  Google Scholar 

  16. Fotiadis, D. et al. Surface tongue and groove contours on lens MIP facilitate cell-to-cell adherence. J. Mol. Biol. 300, 779–789 (2000)

    Article  CAS  Google Scholar 

  17. Hasler, L. et al. Purified lens major intrinsic protein (MIP) forms highly ordered tetragonal two-dimensional arrays by reconstitution. J. Mol. Biol. 279, 855–864 (1998)

    Article  CAS  Google Scholar 

  18. Gorin, M. B., Yancey, S. B., Cline, J., Revel, J. P. & Horwitz, J. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39, 49–59 (1984)

    Article  CAS  Google Scholar 

  19. Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993)

    Article  CAS  Google Scholar 

  20. de Groot, B. L. & Grubmuller, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Varadaraj, K. et al. The role of MIP in lens fiber cell membrane transport. J. Membr. Biol. 170, 191–203 (1999)

    Article  CAS  Google Scholar 

  22. Bond, P. J., Faraldo-Gomez, J. D. & Sansom, M. S. OmpA: a pore or not a pore? Simulation and modeling studies. Biophys. J. 83, 763–775 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Gonen, T., Donaldson, P. & Kistler, J. Galectin-3 is associated with the plasma membrane of lens fiber cells. Invest. Ophthalmol. Vis. Sci. 41, 199–203 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution. J. Mol. Biol. 286, 861–882 (1999)

    Article  CAS  Google Scholar 

  25. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D 56, 1622–1624 (2000)

    Article  CAS  Google Scholar 

  26. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996)

    Article  CAS  Google Scholar 

  27. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  28. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  29. Huang, C. C., Couch, G. S., Pettersen, E. F. & Ferrin, T. E. Chimera: an extensible molecular modeling application constructed using standard components. Pacif. Symp. Biocomput. 1, 724 (1996)

    Google Scholar 

Download references

Acknowledgements

We thank S. C. Harrison for help with the molecular replacement, model building and writing of the manuscript. We also thank Y. Fujiyoshi, K. Mitsuoka and K. Tani for advice. This work was supported by National Institute of Health funding to T.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Walz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Stereo view of the density modified map showing residues lining the closed water pore. (JPG 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonen, T., Sliz, P., Kistler, J. et al. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004). https://doi.org/10.1038/nature02503

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02503

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing