Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dislocation-driven surface dynamics on solids


Dislocations1 are line defects that bound plastically deformed regions in crystalline solids. Dislocations terminating on the surface of materials can strongly influence nanostructural and interfacial stability, mechanical properties, chemical reactions, transport phenomena, and other surface processes. While most theoretical and experimental studies have focused on dislocation motion in bulk solids under applied stress2,3 and step formation due to dislocations at surfaces during crystal growth4,5,6,7, very little is known about the effects of dislocations on surface dynamics and morphological evolution. Here we investigate the near-equilibrium dynamics of surface-terminated dislocations using low-energy electron microscopy8. We observe, in real time, the thermally driven nucleation and shape-preserving growth of spiral steps rotating at constant temperature-dependent angular velocities around cores of dislocations terminating on the (111) surface of TiN in the absence of applied external stress or net mass change. We attribute this phenomenon to point-defect migration from the bulk to the surface along dislocation lines. Our results demonstrate that dislocation-mediated surface roughening can occur even in the absence of deposition or evaporation, and provide fundamental insights into mechanisms controlling nanostructural stability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleation and growth of spiral steps on TiN(111).
Figure 2: Area versus annealing time for 2D TiN loops, spirals and islands on TiN(111).
Figure 3: Temperature dependence of angular velocities of spirals on TiN(111).


  1. Cottrell, A. H. in Dislocations and Plastic Flow in Crystals (eds Fowler, R. H., Kapitza, P., Mott, N. F. & Bullard, E. C.) Ch. 1 (Oxford Univ. Press, London, 1953)

    MATH  Google Scholar 

  2. Bulatov, V., Abraham, F. F., Kubin, L., Devincre, B. & Yip, S. Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391, 669–672 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Lagow, B. W. et al. Observation of dislocation dynamics in the electron microscope. Mater. Sci. Eng. A 309–310, 445–450 (2001)

    Article  Google Scholar 

  4. Verma, A. R. & Amelinckx, S. Spiral growth on carborundum crystal faces. Nature 167, 939–940 (1951)

    Article  ADS  CAS  Google Scholar 

  5. Teng, H. H., Dove, P. M., Orme, C. A. & De Yoreo, J. J. Thermodynamics of calcite growth: Baseline for understanding biomineral formation. Science 282, 724–727 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Pina, C. M., Becker, U., Risthaus, P., Bosbach, D. & Putnis, A. Molecular-scale mechanisms of crystal growth in barite. Nature 395, 483–486 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Burton, W. K., Cabrera, N. & Frank, F. C. The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. R. Soc. Lond. A 243, 299–358 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bauer, E. Low-energy electron microscopy. Rep. Prog. Phys. 57, 895–938 (1994)

    Article  ADS  CAS  Google Scholar 

  9. Tromp, R. M. & Reuter, M. C. Design of a new photo-emission/low-energy electron microscope for surface studies. Ultramicroscopy 36, 99–106 (1991)

    Article  Google Scholar 

  10. Kodambaka, S. et al. Absolute TiN(111) step energies from analysis of anisotropic island shape fluctuations. Phys. Rev. Lett. 88, 146101 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Zinke-Allmang, M., Feldman, L. C. & Grabow, M. H. Clustering on surfaces. Surf. Sci. Rep. 16, 377–463 (1992)

    Article  ADS  CAS  Google Scholar 

  12. Frank, F. C. & Read, W. T. Multiplication processes for slow moving dislocations. Phys. Rev. 79, 722–723 (1950)

    Article  ADS  CAS  Google Scholar 

  13. Bardeen, J. & Herring, C. in Imperfections in Nearly Perfect Crystals (eds Shockley, W., Hollomon, J. H., Maurer, R. & Seitz, F.) Chap. 10 (Wiley, New York, 1952)

    Google Scholar 

  14. Hull, D. & Bacon, D. J. Introduction to Dislocations Ch. 8 (Pergamon, Oxford, 1984)

    Google Scholar 

  15. Kodambaka, S. et al. Size-dependent detachment-limited decay kinetics of two-dimensional TiN islands on TiN(111). Phys. Rev. Lett. 89, 176102 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Sundgren, J. E., Johansson, B. O., Rockett, A., Barnett, S. A. & Greene, J. E. in Physics and Chemistry of Protective Coatings (eds Greene, J. E., Sproul, W. D. & Thornton, J. A.) 95–115 (American Institute of Physics, New York, 1986)

    Google Scholar 

  17. Gall, D., Kodambaka, S., Wall, M. A., Petrov, I. & Greene, J. E. Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study. J. Appl. Phys. 93, 9086–9094 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Weertman, J. & Weertman, J. R. in Elementary Dislocation Theory (eds M. E., Weertman, J. & Weertman, J. R.) Ch. 6 (Macmillan, New York, 1964)

    MATH  Google Scholar 

  19. Justo, J. F., de Koning, M., Cai, W. & Bulatov, V. V. Point defect interaction with dislocations in silicon. Mater. Sci. Eng. A 309–310, 129–132 (2001)

    Article  Google Scholar 

  20. Indenbom, V. L. & Saralidze, Z. K. in Elastic Strain Fields and Dislocation Mobility (eds Indenbom, V. L. & Lothe, J.) Ch. 10 (Elsevier Science, Amsterdam, 1992)

    Google Scholar 

  21. McCarty, K. F., Nobel, J. A. & Bartelt, N. C. Vacancies in solids and the stability of surface morphology. Nature 412, 622–625 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Giesen, M. Step and island dynamics at solid/vacuum and solid/liquid interfaces. Prog. Surf. Sci. 68, 1–153 (2001)

    Article  ADS  CAS  Google Scholar 

Download references


This work was supported by the US Department of Energy (DOE), Division of Materials Science, through the University of Illinois Frederick Seitz Materials Research Laboratory (FS-MRL). We thank C. P. Flynn, H. Birnbaum, R. J. Pflueger and P. O. Å. Persson for discussions and critical reading of the manuscript. We also appreciate the use of the facilities in the Center for Microanalysis of Materials, partially supported by DOE, at the FS-MRL.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. V. Khare.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kodambaka, S., Khare, S., Święch, W. et al. Dislocation-driven surface dynamics on solids. Nature 429, 49–52 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing