Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes


The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies1, but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning2. Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stable isotope and radiochemical data from sediment core OCE326-GGC5 (33° 42′ N, 57° 35′ W, 4.55 km).
Figure 2: Comparison of sedimentary data from the subtropical Atlantic with ice-core, subpolar deep-sea core, and coral records for the past 20 kyr.
Figure 3: Deglacial records of ocean circulation and climate in the North Atlantic region.


  1. Boyle, E. A. & Keigwin, L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987)

    Article  ADS  CAS  Google Scholar 

  2. Legrand, P. & Wunsch, C. Constraints from paleotracer data on the North Atlantic circulation during the last glacial maximum. Paleoceanography 10, 1011–1045 (1995)

    Article  ADS  Google Scholar 

  3. Broecker, W. S. A revised estimate of the radiocarbon age of the North Atlantic Deep Water. J. Geophys. Res. 84, 3218–3226 (1979)

    Article  ADS  CAS  Google Scholar 

  4. Yu, E.-F., Francois, R. & Bacon, M. P. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689–694 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Marchal, O., Francois, R., Stocker, T. F. & Joos, F. Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio. Paleoceanography 15, 625–641 (2000)

    Article  ADS  Google Scholar 

  6. Ohkouchi, N., Eglinton, T. I., Keigwin, L. D. & Hayes, J. M. Spatial and temporal offsets between proxy records in a sediment drift. Science 298, 1224–1227 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Bacon, M. P. & Anderson, R. F. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J. Geophys. Res. 87, 2045–2056 (1982)

    Article  ADS  CAS  Google Scholar 

  8. Choi, M.-S. et al. Rapid determination of 230Th and 231Pa in seawater by desolvated-micronebulization inductively-coupled magnetic sector mass spectrometry. Mar. Chem. 76, 99–112 (2001)

    Article  CAS  Google Scholar 

  9. Chase, Z., Anderson, R. F., Fleisher, M. Q. & Kubik, P. W. The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth Planet. Sci. Lett. 204, 215–229 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Bond, G. et al. Evidence for massive discharge of icebergs into the glacial Northern Atlantic. Nature 360, 245–249 (1992)

    Article  ADS  Google Scholar 

  11. Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich Events in the Subtropical Northeast Atlantic. Science 289, 1321–1323 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Duplessy, J.-C. et al. Changes in surface salinity of the North Atlantic Ocean during the last deglaciation. Nature 358, 485–488 (1993)

    Article  ADS  Google Scholar 

  13. Vidal, L. et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett. 146, 13–27 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Eliot, M., Labeyrie, L. & Duplessy, J.-C. Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60–10 ka). Quat. Sci. Rev. 21, 1153–1165 (2002)

    Article  ADS  Google Scholar 

  15. Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Manabe, S. & Stouffer, R. J. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim. 1, 841–866 (1988)

    Article  ADS  Google Scholar 

  17. Severinghaus, J. P. & Brook, E. J. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286, 930–934 (1999)

    Article  CAS  Google Scholar 

  18. Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994)

    Article  ADS  CAS  Google Scholar 

  19. Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: Land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001)

    Article  ADS  Google Scholar 

  20. Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993)

    Article  ADS  CAS  Google Scholar 

  21. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989)

    Article  ADS  Google Scholar 

  22. Bard, E. et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241–244 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Lehman, S. J. & Keigwin, L. D. Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356, 757–762 (1992)

    Article  ADS  Google Scholar 

  24. Clark, P. U., Mitrovic, J. X., Milne, G. A. & Tamisea, M. E. Sea-level fingerprinting as a direct test for the source of global meltwater pulse 1A. Science 295, 2438–2441 (2002)

    ADS  CAS  PubMed  Google Scholar 

  25. McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5 million year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Hughen, K. A. et al. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391, 65–68 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Clark, P. U., Pisias, N. G., Stocker, T. & Weaver, A. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Hughen, K. A. et al. 14C Activity and global carbon cycle changes over the past 50,000 years. Science 303, 202–207 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Waelbroeck, C. et al. Improving past sea surface temperature estimates based on planktonic fossil faunas. Paleoceanography 13, 272–283 (1998)

    Article  ADS  Google Scholar 

  30. Munk, W. & Wunsch, C. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45, 1976–2009 (1998)

    Article  Google Scholar 

  31. McManus, J. F., Anderson, R. F., Broecker, W. S., Fleisher, M. Q. & Higgins, S. M. Radiometrically determined fluxes in the sub-polar North Atlantic during the last 140,000 years. Earth Planet. Sci. Lett. 135, 29–43 (1998)

    Article  ADS  Google Scholar 

  32. Francois, R., Frank, M., Rutgers van der Loeff, M. M. & Bacon, M. P. 230Th-normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, doi:10.1029/2003PA000939 (2004)

  33. Stuiver, M. et al. INTCAL98 radiocarbon age calibration. Radiocarbon 40, 1041–1083 (1998)

    Article  CAS  Google Scholar 

Download references


This study was improved by assistance and input from O. Marchal, M. Bacon, W. Curry, L. Labeyrie, R. Anderson, N. Ohkouchi and T. Eglinton. Technical expertise was provided by A. Fleer, E. Roosen, L. Zou, S. Manganini, E. Frank, L. Ball, D. Schneider, I. Grigorov, S. Benetti, M. Jeglinski and A. Edwards. Support for this research was provided in part by the US-NSF OCE and INT programmes, the France CNRS, WHOI-OCCI and Mellon awards, and the Comer Science and Education Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. F. McManus.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table

Accelerator mass spectrometer radiocarbon measurements and calibrated (calendar) ages. (PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McManus, J., Francois, R., Gherardi, JM. et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing