Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Partitioning of oxygen during core formation on the Earth and Mars


Core formation on the Earth and Mars involved the physical separation of metal and silicate, most probably in deep magma oceans1,2,3,4. Although core-formation models explain many aspects of mantle geochemistry, they have not accounted for the large differences observed between the compositions of the mantles of the Earth (8?wt% FeO) and Mars (18?wt% FeO) or the smaller mass fraction of the martian core5,6,7. Here we explain these differences as a consequence of the solubility of oxygen in liquid iron-alloy increasing with increasing temperature. We assume that the Earth and Mars both accreted from oxidized chondritic material. In a terrestrial magma ocean, 1,200–2,000?km deep, high temperatures resulted in the extraction of FeO from the silicate magma ocean owing to high solubility of oxygen in the metal. Lower temperatures of a martian magma ocean resulted in little or no extraction of FeO from the mantle, which thus remains FeO-rich. The FeO extracted from the Earth's magma ocean may have contributed to chemical heterogeneities in the lowermost mantle8, a FeO-rich D″ layer9 and the light element budget of the core10,11.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Oxygen partitioning results.
Figure 2: Extrapolations of the oxygen solubility data to higher temperatures and pressures (a and b) using equation (2).
Figure 3: Results of the metal–silicate separation model for Earth (a) and Mars (b).


  1. Li, J. & Agee, C. B. Geochemistry of mantle–core differentiation at high pressure. Nature 381, 686–689 (1996)

    ADS  CAS  Article  Google Scholar 

  2. Li, J. & Agee, C. B. The effect of pressure, temperature, oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe-Ni-S alloy and liquid silicate: Implications for the Earth's core formation. Geochim. Cosmochim. Acta 65, 1821–1832 (2001)

    ADS  CAS  Article  Google Scholar 

  3. Righter, K., Drake, M. J. & Yaxley, G. Prediction of siderophile element/silicate partition coefficients to 20?GPa and 2800?°C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Phys. Earth Planet. Inter. 100, 115–134 (1997)

    ADS  CAS  Article  Google Scholar 

  4. Righter, K., Hervig, R. L. & Kring, D. A. Accretion and core formation on Mars: molybdenum contents of melt inclusion glasses in three SNC meteorites. Geochim. Cosmochim. Acta 62, 2167–2177 (1998)

    ADS  CAS  Article  Google Scholar 

  5. Anderson, D. L. Theory of the Earth (Blackwell, Boston, 1989)

    Google Scholar 

  6. Dreibus, G. & Wanke, H. Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985)

    ADS  CAS  Google Scholar 

  7. McSween, H. Y. Jr What we have learnt about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994)

    ADS  CAS  Article  Google Scholar 

  8. Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999)

    ADS  CAS  Article  Google Scholar 

  9. Garnero, E. J., Revenaugh, J., Williams, Q., Lay, T. & Kellogg, L. H. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 319–334 (Geodynamics Series 28, Am. Geophys. Union, Washington, 1998)

    Book  Google Scholar 

  10. Poirier, J.-P. Light elements in the Earth's outer core: A critical review. Phys. Earth Planet. Inter. 85, 319–337 (1994)

    ADS  CAS  Article  Google Scholar 

  11. Hillgren, V., Gessmann, C. K. & Li, J. in Origin of the Earth and Moon (eds Canup, R. & Righter, K.) 245–263 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  12. Melosh, H. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 69–83 (Oxford Univ. Press, Oxford, 1990)

    Google Scholar 

  13. Stevenson, D. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 231–249 (Oxford Univ. Press, Oxford, 1990)

    Google Scholar 

  14. Gessmann, C. K. & Rubie, D. C. The effect of temperature on the partitioning of Ni, Co, Mn, Cr and V at 9?GPa and constraints on formation of the Earth's core. Geochim. Cosmochim. Acta 62, 867–882 (1998)

    ADS  CAS  Article  Google Scholar 

  15. O'Neill, H. S. C., Canil, D. & Rubie, D. C. Metal-oxide equilibria to 2500?°C and 25?GPa: implications for core formation and the light component in the Earth's core. J. Geophys. Res. 103, 12239–12260 (1998)

    ADS  CAS  Article  Google Scholar 

  16. Kato, T. & Ringwood, A. E. Melting relationships in the system Fe-FeO at high pressures: implications for the composition and formation of the Earth's core. Phys. Chem. Miner. 16, 524–538 (1989)

    ADS  CAS  Article  Google Scholar 

  17. Trønnes, R. G. Melting relations and major element partitioning in an oxidized bulk Earth model composition at 15–26?GPa. Lithos 53, 233–245 (2000)

    ADS  Article  Google Scholar 

  18. Trønnes, R. G. & Frost, D. J. Peridotite melting and mineral-melt partitioning of major and minor elements at 22–24.5?GPa. Earth Planet. Sci. Lett. 197, 117–131 (2002)

    ADS  Article  Google Scholar 

  19. Li, J. & Agee, C. B. Element partitioning constraints on the light element composition of the Earth's core. Geophys. Res. Lett. 28, 81–84 (2001)

    ADS  Article  Google Scholar 

  20. Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C. & Righter, K. Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003)

    ADS  CAS  Article  Google Scholar 

  21. Herzberg, C. & Zhang, J. Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone. J. Geophys. Res. 101, 8271–8295 (1996)

    ADS  CAS  Article  Google Scholar 

  22. Ohtani, E. Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Inter. 33, 12–25 (1983)

    ADS  CAS  Article  Google Scholar 

  23. McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  CAS  Article  Google Scholar 

  24. O'Neill, H. S. C. & Palme, H. in The Earth's Mantle (ed. Jackson, I.) 3–126 (Cambridge Univ. Press, Cambridge, 1998)

    Google Scholar 

  25. Chabot, N. L. & Agee, C. B. Core formation in the Earth and Moon: new experimental constraints from V, Cr and Mn. Geochim. Cosmochim. Acta 67, 2077–2091 (2003)

    ADS  CAS  Article  Google Scholar 

  26. Gessmann, C. K. & Rubie, D. C. The origin of the depletions of V, Cr, and Mn in the mantles of the Earth and Moon. Earth Planet. Sci. Inter. 184, 95–107 (2000)

    ADS  CAS  Article  Google Scholar 

  27. Bouhifd, M. A. & Jephcoat, A. P. The effect of pressure on partitioning of Ni and Co between silicate and iron-rich metal liquids: a diamond-anvil cell study. Earth Planet. Sci. Inter. 209, 245–255 (2003)

    ADS  CAS  Article  Google Scholar 

  28. Chase, M. W. J. et al. JANAF thermochemical tables. J. Phys. Chem. Ref. Data 14 (suppl. 1) (1985)

  29. Sundman, B. An assessment of the Fe-O system. J. Phase Equil. 12, 127–140 (1991)

    CAS  Article  Google Scholar 

  30. Fei, Y. & Mao, H.-K. In situ determination of the NiAs phase of FeO at high pressure and temperature. Science 266, 1678–1680 (1994)

    ADS  CAS  Article  Google Scholar 

Download references


We thank H. Fischer, G. Herrmannsdörfer, D. Krausse and H. Schulze for technical assistance. The German Science Foundation (DFG) supported this research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David C. Rubie.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information 1

Justification for the extrapolation of the experimental data to high temperatures and pressures. (DOC 34 kb)

Supplementary Information 2

Electron microprobe analyses of experimental run products. (DOC 303 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rubie, D., Gessmann, C. & Frost, D. Partitioning of oxygen during core formation on the Earth and Mars. Nature 429, 58–61 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing