Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle

Abstract

Seismic anisotropy provides an important observational constraint on flow in the Earth's deep interior. The quantitative interpretation of anisotropy, however, requires knowledge of the slip geometry of the constitutive minerals that are responsible for producing rock fabrics. The Earth's lower mantle is mostly composed of (Mg, Fe)SiO3 perovskite1, but as MgSiO3 perovskite is not stable at high temperature under ambient pressure, it has not been possible to investigate its mechanical behaviour with conventional laboratory deformation experiments. To overcome this limitation, several attempts were made to infer the mechanical properties of MgSiO3 perovskite on the basis of analogue materials2,3,4,5,6,7. But perovskites do not constitute an analogue series for plastic deformation, and therefore the direct investigation of MgSiO3 perovskite is necessary. Here we have taken advantage of recent advances in experimental high-pressure rheology8 to perform deformation experiments on coarse-grained MgSiO3 polycrystals under pressure and temperature conditions of the uppermost lower mantle. We show that X-ray peak broadening measurements developed in metallurgy can be adapted to low-symmetry minerals to identify the elementary deformation mechanisms activated under these conditions. We conclude that, under uppermost lower-mantle conditions, MgSiO3 perovskite deforms by dislocation creep and may therefore contribute to producing seismic anisotropy in rocks at such depths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of silicate perovskite.
Figure 2: Microstructure.
Figure 3: X-ray peak broadening.

Similar content being viewed by others

References

  1. Ringwood, A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55, 2083–2110 (1991)

    Article  ADS  CAS  Google Scholar 

  2. Poirier, J. P., Peyronneau, J., Gesland, J. Y. & Brebec, G. Viscosity and conductivity of the lower mantle; an experimental study on a MgSiO3 perovskite analogue, KZnF3 . Phys. Earth Planet. Inter. 32, 273–287 (1983)

    Article  ADS  CAS  Google Scholar 

  3. Beauchesne, S. & Poirier, J. P. Creep of barium titanate perovskite: a contribution to a systematic approach to the viscosity of the mantle. Phys. Earth Planet. Inter. 55, 187–199 (1989)

    Article  ADS  CAS  Google Scholar 

  4. Beauchesne, S. & Poirier, J. P. In search of a systematics for the viscosity of perovskites: creep of potassium tantalate and niobate. Phys. Earth Planet. Inter. 61, 182–198 (1990)

    Article  ADS  Google Scholar 

  5. Wang, Z. C., Karato, S. & Fujino, K. High temperature creep of single crystal strontium titanate (SrTiO3)—a contribution to creep systematics in perovskites. Phys. Earth Planet. Inter. 79, 299–312 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Li, P., Karato, S. I. & Wang, Z. High-temperature creep in fine-grained polycrystalline CaTiO3, an analogue material of (Mg, Fe)SiO3 perovskite. Phys. Earth Planet. Inter. 95, 19–36 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Wang, Z. C., Dupas-Bruzek, C. & Karato, S. High temperature creep of an orthorhombic perovskite—YAlO3 . Phys. Earth Planet. Inter. 110, 51–69 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Chen, J. H., Weidner, D. J. & Vaughan, M. T. The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature 419, 824–826 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Horiuchi, H., Ito, E. & Weidner, D. J. Perovskite-type MgSiO3: single-crystal X-ray diffraction study. Am. Mineral. 72, 357–360 (1987)

    CAS  Google Scholar 

  10. Cordier, P. & Rubie, D. C. Plastic deformation of minerals under extreme pressure using a multi-anvil apparatus. Mater. Sci. Eng. A 309, 38–43 (2001)

    Article  Google Scholar 

  11. Caglioti, G., Paoletti, A. & Ricci, F. P. Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. Methods 3, 223–228 (1958)

    Article  CAS  Google Scholar 

  12. Krivoglaz, M. A. Theory of X-ray and Thermal Neutron Scattering by Real Crystals (Plenum, New York, 1969)

    Google Scholar 

  13. Krivoglaz, M. A. X-ray and Neutron Diffraction in Nonideal Crystals (Springer, Berlin, 1996)

    Book  Google Scholar 

  14. Wilkens, M. The determination of density and distribution of dislocations in deformed single crystals from broadened x-ray diffraction profiles. Phys. Status Solidi 2, 359–370 (1970)

    Article  ADS  Google Scholar 

  15. Kuzel, R. & Klimanek, P. X-ray diffraction line broadening due to dislocations in non-cubic crystalline materials. 3. Experimental results for plastically deformed zirconium. J. Appl. Crystallogr. 22, 299–307 (1989)

    Article  CAS  Google Scholar 

  16. Ungár, T. & Borbély, A. The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl. Phys. Lett. 69, 3173–3175 (1996)

    Article  ADS  Google Scholar 

  17. Ungár, T., Gubicza, J., Ribárik, G. & Borbély, A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34, 298–310 (2001)

    Article  Google Scholar 

  18. Ribárik, G., Ungár, T. & Gubicza, J. MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. Crystallogr. 34, 669–676 (2001)

    Article  Google Scholar 

  19. Karato, S. I. Plasticity of MgSiO3 perovskite: the results of microhardness tests on single crystals. Geophys. Res. Lett. 17, 13–16 (1990)

    Article  ADS  Google Scholar 

  20. McNamara, A. K., vanKeken, P. E. & Karato, S. I. Development of anisotropic structure in the Earth's lower mantle by solid-state convection. Nature 416, 310–314 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Merkel, S. et al. Deformation of (Mg0.9,Fe0.1)SiO3 perovskite aggregates up to 32 GPa. Earth Planet. Sci. Lett. 209, 351–360 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

High-pressure experiments were performed at the Bayerisches Geoinstitut under the EU ‘IHP–Access to Research Infrastructures’ programme. P.C. benefited from a ‘Congé thématique pour recherche’ from the University of Lille and from continuous support from INSU (‘Intérieur de la Terre’ programme). T.U. and G.T. thank the Hungarian Science Foundation for supporting this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Cordier.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordier, P., Ungár, T., Zsoldos, L. et al. Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle. Nature 428, 837–840 (2004). https://doi.org/10.1038/nature02472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02472

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing