Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic response of Permian brachiopod communities to long-term environmental change

Abstract

The fossil record preserves numerous natural experiments that can shed light on the response of ecological communities to environmental change. However, directly observing the community dynamics of extinct organisms is not possible. As an alternative, neutral ecological models1,2,3 suggest that species abundance distributions reflect dynamical processes like migration, competition, recruitment, and extinction. Live–dead comparisons suggest that such distributions can be faithfully preserved in the rock record4. Here we use a maximum-likelihood approach to show that brachiopod (lamp shell) abundance distributions from four temporally distinct ecological landscapes from the Glass Mountains, Texas (of the Permian period), exhibit significant differences. Further, all four are better fitted by zero-sum multinomial distributions, characteristic of Hubbell's neutral model2, than by log-normal distributions, as predicted by the traditional ecological null hypothesis5. Using the neutral model as a guide, we suggest that sea level fluctuations spanning about 10 Myr altered the degrees of isolation and exchange among local communities within these ecological landscapes. Neither these long-term environmental changes nor higher-frequency sea level fluctuations resulted in wholesale extinction or major innovation within evolutionary lineages.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Figure 1: Stratigraphic column and location map.
Figure 2: Abundance distributions of species from each sequence.
Figure 3: 95% confidence boundaries of maximum-likelihood zero-sum multinomial parameters for each sequence.

References

  1. Hughes, R. G. A model of the structure and dynamics of benthic marine invertebrate communities. Mar. Ecol. Prog. Ser. 15, 1–11 (1984)

    ADS  Article  Google Scholar 

  2. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, Princeton, New Jersey, 2001)

    Google Scholar 

  3. Bell, G. Neutral macroecology. Science 293, 2413–2418 (2001)

    ADS  CAS  Article  Google Scholar 

  4. Kidwell, S. M. Preservation of species abundance in marine death assemblages. Science 294, 1091–1094 (2001)

    ADS  CAS  Article  Google Scholar 

  5. McGill, B. J. A test of the unified neutral theory of biodiversity. Nature 422, 881–885 (2003)

    ADS  CAS  Article  Google Scholar 

  6. Cooper, G. A. & Grant, R. E. Permian Brachiopods of West Texas I 1–231 (Smithsonian Contributions to Paleobiology 14, Smithsonian Institution Press, Washington DC, 1972)

    Google Scholar 

  7. Cooper, G. A. & Grant, R. E. Permian Brachiopods of West Texas, II, 233–793 (Smithsonian Contributions to Paleobiology 15, Smithsonian Institution Press, Washington DC, 1974)

    Google Scholar 

  8. Cooper, G. A. & Grant, R. E. Permian Brachiopods of West Texas, III, 795–1921 (Smithsonian Contributions to Paleobiology 19, Smithsonian Institution Press, Washington DC, 1975)

    Google Scholar 

  9. Cooper, G. A. & Grant, R. E. Permian Brachiopods of West Texas, IV, 1923–2607 (Smithsonian Contributions to Paleobiology 21, Smithsonian Institution Press, Washington DC, 1976)

    Google Scholar 

  10. Cooper, G. A. & Grant, R. E. Permian Brachiopods of West Texas, V, 2609–3159 (Smithsonian Contributions to Paleobiology 24, Smithsonian Institution Press, Washington DC, 1976)

    Google Scholar 

  11. Cooper, G. A. & Grant, R. E. Permian Brachiopods of West Texas, VI, 3161–3370 (Smithsonian Contributions to Paleobiology 32, Smithsonian Institution Press, Washington DC, 1977)

    Google Scholar 

  12. Sarg, J. F. & Lehmann, P. J. in Lower and Middle Guadalupian Facies, Stratigraphy, and Reservoir Geometries, San Andres/Grayburg Formations, Guadalupe Mountains, New Mexico and Texas (eds Moore, G. & Wilde, G.) 1–8 (SEPM Permian Basin Section, Tulsa, Oklahoma, 1986)

    Google Scholar 

  13. Sarg, J. F., Markello, J. R. & Weber, L. J. in Advances in Carbonate Sequence Stratigraphy: Applications to Reservoirs, Outcrops, and Models (eds Harris, P. M., Saller, A. H. & Simo, J. A.) 11–34 (Society for Sedimentary Geology (SEPM), Tulsa, Oklahoma, 1999)

    Book  Google Scholar 

  14. Carroll, M., Kowalewski, M., Simoes, M. G. & Goodfriend, G. A. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology 29, 381–402 (2003)

    Article  Google Scholar 

  15. Sugihara, G., Bersier, L.-F., Southwood, T. R. E., Pimm, S. L. & May, R. M. Predicted correspondence between species abundances and dendrograms of niche similarities. Proc. Natl Acad. Sci. USA 100, 5246–5251 (2003)

    ADS  CAS  Article  Google Scholar 

  16. Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003)

    ADS  CAS  Article  Google Scholar 

  17. McKane, A. J., Alonso, D. & Sole, R. V. Analytic solution of Hubbell's model of local community dynamics. Theor. Pop. Biol. 65, 67–73 (2004)

    Article  Google Scholar 

  18. Clark, J. S. & MacLachlan, J. S. Stability of forest biodiversity. Nature 423, 635–638 (2003)

    ADS  CAS  Article  Google Scholar 

  19. Fargione, J., Brown, C. S. & Tilman, D. Community assembly and invasion: An experimental test of neutral versus niche processes. Proc. Natl Acad. Sci. USA 100, 8916–8920 (2003)

    ADS  CAS  Article  Google Scholar 

  20. Preston, F. W. The commonness and rarity of species. Ecology 29, 254–283 (1948)

    Article  Google Scholar 

  21. May, R. M. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 81–120 (Belknap, Cambridge, Massachusetts, 1975)

    Google Scholar 

  22. Routledge, R. D. The form of species-abundance distributions. J. Theor. Biol. 82, 547–558 (1980)

    CAS  Article  Google Scholar 

  23. Rohr, D. M. et al. in The Guadalupian Symposium (eds Wardlaw, B. R., Grant, R. E. & Rohr, D. M.) 5–36 (Smithsonian Contributions to the Earth Sciences 32, Smithsonian Institution Press, Washington DC, 2000)

    Google Scholar 

  24. Wardlaw, B. R., Ross, C. A. & Grant, R. E. in The Guadalupian Symposium (eds Wardlaw, B. R., Grant, R. E. & Rohr, D. M.) 121–126 (Smithsonian Contributions to the Earth Sciences 32, Washington DC, 2000)

    Google Scholar 

  25. Wardlaw, B. R. in The Guadalupian Symposium (eds Wardlaw, B. R., Grant, R. E. & Rohr, D. M.) 37–87 (Smithsonian Contributions to the Earth Sciences 32, Smithsonian Institution Press, Washington DC, 2000)

    Google Scholar 

  26. Harris, M. T., Lehrmann, D. J. & Lambert, L. L. in The Guadalupian Symposium (eds Wardlaw, B. R., Grant, R. E. & Rohr, D. M.) 153–173 (Smithsonian Contributions to the Earth Sciences 32, Smithsonian Institution Press, Washington, DC, 2000)

    Google Scholar 

  27. Nee, S., Harvey, P. H. & May, R. M. Lifting the veil on abundance patterns. Proc. R. Soc. Lond. B 243, 161–163 (1991)

    ADS  Article  Google Scholar 

  28. Hilborn, R. & Mangel, M. The Ecological Detective: Confronting Models with Data (Princeton Univ. Press, Princeton, New Jersey, 1997)

    Google Scholar 

  29. Bowring, S. A. et al. U/ Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280, 1039–1045 (1998)

    ADS  CAS  Article  Google Scholar 

  30. Jin, Y., Wardlaw, B. R., Glenister, B. F. & Kotlyar, C. V. Permian chronostratigraphic subdivisions. Episodes 20, 10–15 (1997)

    Google Scholar 

Download references

Acknowledgements

We thank A. I. Miller and M. Foote for comments.This research was supported by the Walcott Fund of the Department of Paleobiology of the Smithsonian Institution and the NASA Astrobiology Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Olszewski.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Includes information on: ecological relationships among sequences; the effect of combining communities over evolutionary timescales. (PDF 116 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olszewski, T., Erwin, D. Dynamic response of Permian brachiopod communities to long-term environmental change. Nature 428, 738–741 (2004). https://doi.org/10.1038/nature02464

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02464

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing