Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cdc42 and mDia3 regulate microtubule attachment to kinetochores


During mitosis, the mitotic spindle, a bipolar structure composed of microtubules (MTs) and associated motor proteins1,2, segregates sister chromatids to daughter cells. Initially some MTs emanating from one centrosome attach to the kinetochore at the centromere of one of the duplicated chromosomes. This attachment allows rapid poleward movement of the bound chromosome. Subsequent attachment of the sister kinetochore to MTs growing from the other centrosome results in the bi-orientation of the chromosome, in which interactions between kinetochores and the plus ends of MTs are formed and stabilized2. These processes ensure alignment of chromosomes during metaphase and their correct segregation during anaphase. Although many proteins constituting the kinetochore have been identified and extensively studied, the signalling responsible for MT capture and stabilization is unclear1,2. Small GTPases of the Rho family regulate cell morphogenesis by organizing the actin cytoskeleton and regulating MT alignment and stabilization3. We now show that one member of this family, Cdc42, and its effector, mDia3, regulate MT attachment to kinetochores.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Effects of toxin B on mitosis.
Figure 2: Effects of Rho GTPase mutants on mitosis.
Figure 3: Interaction of mDia3 and CENP-A.
Figure 4: Effects of depletion of mDia3 on mitosis.


  1. 1

    Scholey, J. M., Brust-Masher, I. & Mogilner, A. Cell division. Nature 422, 746–752 (2003)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003)

    CAS  Article  Google Scholar 

  3. 3

    Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Mabuchi, I. et al. A rho-like protein is involved in the organisation of the contractile ring in dividing sand dollar eggs. Zygotes 1, 325–331 (1993)

    CAS  Article  Google Scholar 

  5. 5

    Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503 (1995)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Eda, M. et al. Rho-dependent transfer of Citron-kinase to the cleavage furrow of dividing cells. J. Cell Sci. 114, 3273–3284 (2001)

    CAS  PubMed  Google Scholar 

  7. 7

    Wasserman, S. FH proteins as cytoskeletal organizers. Trends Cell Biol. 8, 111–115 (1998)

    CAS  Article  Google Scholar 

  8. 8

    Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997)

    CAS  Article  Google Scholar 

  9. 9

    Ishizaki, T., Morishima, Y., Furuyashiki, T., Kato, T. & Narumiya, S. Coordination of microtubules and actin cytoskeleton by a Rho effector, mDia1. Nature Cell Biol. 3, 8–14 (2001)

    CAS  Article  Google Scholar 

  10. 10

    Gundersen, G. G. Evolutionary conservation of microtubule-capture mechanisms. Nature Rev. Mol. Cell. Biol. 3, 296–304 (2002)

    CAS  Article  Google Scholar 

  11. 11

    Alberts, A. S., Bouquin, N., Johnston, L. H. & Treisman, R. Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein β subunits and the yeast response regulator protein Skn7. J. Biol. Chem. 273, 8616–8622 (1998)

    CAS  Article  Google Scholar 

  12. 12

    Bione, S. et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am. J. Hum. Genet. 62, 533–541 (1998)

    CAS  Article  Google Scholar 

  13. 13

    Watanabe, N. et al. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999)

    CAS  Article  Google Scholar 

  14. 14

    Kato, T. et al. Localization of a mammalian homolog of Diaphanous, mDia1, to the mitotic spindle in HeLa cells. J. Cell Sci. 114, 775–784 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Goshima, G., Kiyomitsu, T., Yoda, K. & Yanagida, M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol. 160, 25–39 (2003)

    CAS  Article  Google Scholar 

  16. 16

    Kellum, R. HP1 complexes and heterochromatin assembly. Curr. Top. Microbiol. Immunol. 274, 53–77 (2003)

    CAS  PubMed  Google Scholar 

  17. 17

    Ando, S. et al. CENP-A, -B, and -C chromatin complex that contains the I-type α-satellite array constitutes the prekinetochore in HeLa cells. Mol. Cell. Biol. 22, 2229–2241 (2002)

    CAS  Article  Google Scholar 

  18. 18

    Adams, R. R., Carmena, M. & Earnshaw, W. C. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell. Biol. 11, 49–54 (2001)

    CAS  Article  Google Scholar 

  19. 19

    Arakawa, Y. et al. Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurons. J. Cell Biol. 161, 381–391 (2003)

    CAS  Article  Google Scholar 

  20. 20

    Tirnauer, J. S., Canman, J. C., Salmon, E. D. & Mitchison, T. J. EB1 targets to kinetochores with attached, polymerizing microtubules. Mol. Biol. Cell 13, 4308–4316 (2002)

    CAS  Article  Google Scholar 

  21. 21

    Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A. R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3, 51–62 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Tatsumoto, T., Xie, X., Blumenthal, R., Okamoto, I. & Miki, T. Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J. Cell Biol. 147, 921–928 (1999)

    CAS  Article  Google Scholar 

  23. 23

    Hirose, K. et al. MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody. J. Biol. Chem. 276, 5821–5828 (2001)

    CAS  Article  Google Scholar 

  24. 24

    Van de Putte, T. et al. Mice with a homozygous gene trap vector insertion in mgcRac GAP die during pre-implantation development. Mech. Dev. 102, 33–44 (2001)

    CAS  Article  Google Scholar 

  25. 25

    Rodriguez, O. C. et al. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Pellman, D. Cancer. A CINtillating new job for the APC tumor suppressor. Science 291, 2555–2556 (2001)

    CAS  Article  Google Scholar 

  28. 28

    Yao, X. et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biol. 2, 484–491 (2000)

    CAS  Article  Google Scholar 

  29. 29

    Andreassen, P. R., Palmer, D. K., Wener, M. H. & Marholis, R. L. Telophase disc: a new mammalian mitotic organelle that bisects telophase cells with a possible function in cytokinesis. J. Cell Sci. 99, 523–534 (1991)

    PubMed  Google Scholar 

  30. 30

    Maiato, H. et al. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113, 891–904 (2003)

    CAS  Article  Google Scholar 

Download references


We thank K. Aktories for Clostridium difficile toxin B, Y. Kiyosue for pQBI25-Xβ-tubulin, N. Mimori for CREST serum, S. Tsukita for the use of Delta-Vision system, T. Kiyomitsu, T. Tsuji, Y. Arakawa, J. Monypenny and N. Watanabe for advice, and M. Yanagida for discussion. This work was supported in part by Grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and from the Ministry of Health, Labour and Welfare of Japan.

Author information



Corresponding author

Correspondence to Shuh Narumiya.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods and Figures (DOC 1467 kb)

Supplementary Movie 1

Mitosis of control cells, merged images for GFP-Xbeta-tubulin and Hoechst 33342(Red). (MOV 801 kb)

Supplementary Movie 2

Mitosis of toxin B-treated cells, merged images for GFP-Xbeta-tubulin and Hoechst 33342(Red). (MOV 1063 kb)

Supplementary Movie 3

Mitosis of control cells, merged images for GFP-EB1 and dsRed2-histoneH2B-k. (MOV 3862 kb)

Supplementary Movie 4

Mitosis of cells treated with mDia3 siRNA, merged images for GFP-EB1 and dsRed2-histoneH2B-k. (MOV 3072 kb)

Supplementary Movie 5

Mitosis of cells treated with mDia3 siRNA, GFP-EB1 images. (MOV 3072 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yasuda, S., Oceguera-Yanez, F., Kato, T. et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 428, 767–771 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing