Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electronic reconstruction at an interface between a Mott insulator and a band insulator

Abstract

Surface science is an important and well-established branch of materials science involving the study of changes in material properties near a surface or interface. A fundamental issue has been atomic reconstruction: how the surface lattice symmetry differs from the bulk. ‘Correlated-electron compounds’ are materials in which strong electron–electron and electron–lattice interactions produce new electronic phases, including interaction-induced (Mott) insulators, many forms of spin, charge and orbital ordering, and (presumably) high-transition-temperature superconductivity1,2. Here we propose that the fundamental issue for the new field of correlated-electron surface/interface science is ‘electronic reconstruction’: how does the surface/interface electronic phase differ from that in the bulk? As a step towards a general understanding of such phenomena, we present a theoretical study of an interface between a strongly correlated Mott insulator and a band insulator. We find dramatic interface-induced electronic reconstructions: in wide parameter ranges, the near-interface region is metallic and ferromagnetic, whereas the bulk phase on either side is insulating and antiferromagnetic. Extending the analysis to a wider range of interfaces and surfaces is a fundamental scientific challenge and may lead to new applications for correlated electron materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ground-state phase diagram computed in Hartree–Fock approximation as a function of the on-site Coulomb interaction U and the inverse of the La layer number n.
Figure 2: Spin and orbitally resolved charge densities as function of transverse (001) coordinate z for heterostructure with one La layer.
Figure 3: Dependence of total and metallic-subband charge densities ntot(z), nmetallic(z) on transverse spatial coordinate z for heterostructure with 6 La layers and U = 10t.
Figure 4: Fermi surface contours as functions of momenta (px,py) in plane parallel to layers, for six-layer heterostructure, U = 10t.

Similar content being viewed by others

References

  1. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Altieri, S., Tjeng, L. H. & Sawatzky, G. A. Ultrathin oxide films on metals: new physics and new chemistry? Thin Solid Films 400, 9–15 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Hesper, R., Tjeng, L. H., Heeres, A. & Sawatzky, G. A. Photoemission evidence of electronic stabilization of polar surface in K3C60 . Phys. Rev. B 62, 16046–16055 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Duffy, D. M. & Stoneham, A. M. Conductivity and ‘negative U’ for ionic grain boundaries. J. Phys. C 16, 4087–4092 (1983)

    Article  ADS  CAS  Google Scholar 

  6. Altieri, S., Tjeng, L. H. & Sawatzky, G. A. Electronic structure and chemical reactivity of oxide-metal interfaces: MgO(100)/Ag(100). Phys. Rev. B 61, 16948–16955 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Potthoff, M. & Nolting, W. Metallic surface of a Mott insulator? Mott insulating surface of a metal. Phys. Rev. B 60, 7834–7849 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Fang, Z., Solovyev, I. V. & Terakura, K. Phase diagram of tetragonal manganites. Phys. Rev. Lett. 84, 3169–3172 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Maiti, K., Mahadevan, P. & Sarma, D. D. Evolution of spectral function in a doped Mott insulator: Surface vs bulk contributions. Phys. Rev. Lett. 80, 2885–2888 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Matzdorf, R. et al. Ferromagnetism stabilized by lattice distortion at the surface of the p-wave superconductor Sr2RuO4 . Science 289, 746–748 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Moore, R. G. et al. Surface dynamics of the layered ruthenate Ca1.9Sr0.1RuO4 . Phys. Status Solidi (in the press)

  12. Maiti, K. et al. Electronic structure of Ca1–xSrxVO3: A tale of two energy scales. Europhys. Lett. 55, 246–252 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Izumi, M. et al. Perovskite superlattices as tailored materials of correlated electrons. Mater. Sci. Eng. B 84, 53–57 (2001)

    Article  Google Scholar 

  14. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge–modulation in atomic-scale perovslite titanate superlattices. Nature 419, 378–380 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Sakudo, T. & Unoki, H. Dielectric properties of SrTiO3 at low temperatures. Phys. Rev. Lett. 26, 851–853 (1971)

    Article  ADS  CAS  Google Scholar 

  16. Müller, K. A. & Burkard, H. SrTiO3: an intrinsic quantum paraelectric below 4K. Phys. Rev. B 19, 3593–3602 (1979)

    Article  ADS  Google Scholar 

  17. Fujitani, H. & Asano, S. Full-potential band calculations on YTiO3 with a distorted perovskite structure. Phys. Rev. B 51, 2098–2102 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Mizokawa, T. & Fujimori, A. Unrestricted Hartree-Fock study of transition-metal oxides: Spin and orbital ordering in perovskite-type lattice. Phys. Rev. B 51, 12880–12883 (1995)

    Article  ADS  CAS  Google Scholar 

  19. Okimoto, Y., Katsufuji, T., Okada, Y., Arima, T. & Tokura, Y. Optical spectra in (La, Y)TiO3: Variation of Mott-Hubbard gap features with change of electron correlation and band filling. Phys. Rev. B 51, 9581–9588 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Kiyama, T. & Itoh, M. Presence of 3d quadrupole moment in LaTiO3 studied by 47,49Ti NMR. Phys. Rev. Lett. 91, 167202 (2003)

    Article  ADS  Google Scholar 

  21. Mochizuki, M. & Imada, M. Orbital-spin structure and lattice coupling in RTiO3 where R = La, Pr, Nd, and Sm. Phys. Rev. Lett. 91, 167203 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Potthoff, G. Sawatzky, W. Ku, H. Y. Hwang, E. W. Plummer and D. R. Hamann for conversations and the US NSF and the JSPS for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Millis.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, S., Millis, A. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630–633 (2004). https://doi.org/10.1038/nature02450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02450

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing