Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Current-induced domain-wall switching in a ferromagnetic semiconductor structure

Abstract

Magnetic information storage relies on external magnetic fields to encode logical bits through magnetization reversal. But because the magnetic fields needed to operate ultradense storage devices are too high to generate, magnetization reversal by electrical currents is attracting much interest as a promising alternative encoding method. Indeed, spin-polarized currents can reverse the magnetization direction of nanometre-sized metallic structures through torque1,2,3,4; however, the high current densities of 107–108 A cm-2 that are at present required exceed the threshold values tolerated by the metal interconnects of integrated circuits5,6. Encoding magnetic information in metallic systems has also been achieved by manipulating the domain walls at the boundary between regions with different magnetization directions7,8,9,10,11,12,13, but the approach again requires high current densities of about 107 A cm-2. Here we demonstrate that, in a ferromagnetic semiconductor structure, magnetization reversal through domain-wall switching can be induced in the absence of a magnetic field using current pulses with densities below 105 A cm-2. The slow switching speed and low ferromagnetic transition temperature of our current system are impractical. But provided these problems can be addressed, magnetic reversal through electric pulses with reduced current densities could provide a route to magnetic information storage applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A micrograph and a schematic drawing of the device.
Figure 2: The hysteresis loops of regions I, II and III, of sample A measured by RHall at 83 K, and the temperature and the current dependence of the averaged saturated Hall resistance, RHall, sat.
Figure 3: The effect of successive alternating negative and positive current pulses on RHall for regions I, II and III of sample A.
Figure 4: MOKE images of sample A using 546-nm light at 80 K.

Similar content being viewed by others

References

  1. Slonczewski, J. Current-driven excitation of magnetic multilayer. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998) erratum (81), 493 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Albert, F. J., Katine, J. A., Buhrman, R. A. & Ralph, D. C. Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett. 77, 3809–3811 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Sze, S. M. (ed.) VLSI Technology 412 (McGraw-Hill, New York, 1988)

  6. Michael, N. L., Kim, C. U., Gillespie, P. & Augur, R. in Proc. Advanced Metallization Conf., 29–30 Oct. 2002, Tokyo (ed. Zaima, S.)) 42–43 (Office Sofiel, Tokyo, 2002)

    Google Scholar 

  7. Berger, L. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55, 1954–1956 (1984)

    Article  ADS  CAS  Google Scholar 

  8. Freitas, P. P. & Berger, L. Observation of s-d exchange force between domain wall and electric current in very thin permalloy films. J. Appl. Phys. 57, 1266–1269 (1985)

    Article  ADS  CAS  Google Scholar 

  9. Gan, L., Chung, S. H., Aschenbach, K. H., Dreyer, M. & Gomez, R. D. Pulsed-current-induced domain wall propagation in permalloy patterns observed using magnetic force microscope. IEEE Trans. Mag. 36, 3047–3049 (2000)

    Article  ADS  Google Scholar 

  10. Grollier, J. et al. Switching a spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett. 83, 509–511 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Tsoi, M., Fontana, R. E. & Parkin, S. S. P. Magnetic domain wall motion triggered by an electric current. Appl. Phys. Lett. 83, 2617–2619 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Vernier, N., Allwood, D. A., Atkinson, D., Cooke, M. D. & Cowburn, R. P. Domain wall propagation in magnetic nanowires by spin polarized current injection. Preprint at 〈http://lanl.arXiv.org/abs/cond-mat/0304549〉 (2003).

  13. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195205 (2001)

    Article  ADS  Google Scholar 

  17. Chiba, D., Takamura, K., Matsukura, F. & Ohno, H. Effect of low-temperature annealing on (Ga,Mn)As trilayer structures. Appl. Phys. Lett. 82, 3020–3022 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Labaye, Y., Berger, L. & Coey, J. M. D. Domain walls in ferromagnetic nanoconstriction. J. Appl. Phys. 91, 5341–5346 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Salhi, E. & Berger, L. Current-induced displacements of Bloch walls in Ni-Fe films of thickness 120–740 nm. J. Appl. Phys. 76, 4787–4792 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Berger, L. Prediction of a domain-drag effect in uniaxial, non-compensated, ferromagnetic metals. J. Phys. Chem. Solids 35, 947–956 (1974)

    Article  ADS  CAS  Google Scholar 

  21. Berger, L. Motion of magnetic domain wall traversed by fast-rising current pulses. J. Appl. Phys. 71, 2721–2726 (1992)

    Article  ADS  CAS  Google Scholar 

  22. Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004)

    Article  ADS  PubMed  Google Scholar 

  23. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Tang, H. X., Kawakami, R. K., Awschalom, D. D. & Roukes, M. L. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys. Rev. Lett. 90, 107201 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Flatté, M. E., Yu, Z. G., Johnston-Halperin, E. & Awschalom, D. D. Theory of semiconductor magnetic bipolar transistors. Appl. Phys. Lett. 82, 4740–4742 (2003)

    Article  ADS  Google Scholar 

  28. Saito, H., Zayets, V., Yamagata, S. & Ando, K. Room-temperature ferromagnetism in a II–VI diluted magnetic semiconductor Zn1-xCrxTe. Phys. Rev. Lett. 90, 207202 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Pearton, S. J. et al. Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93, 1–13 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Dietl, Y. Ohno, K. Ohtani and H. Kurino for discussions and K. Akahane, S. Meguro, S. Ito, K. Ikuo and Y. Sato for their technical assistance. This work was supported in part by the IT programme of ‘RR2002’ from MEXT, grant-in-aids from MEXT/JSPS, research fellowships from JSPS, and the ‘21st Century COE’ programme at Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ohno.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanouchi, M., Chiba, D., Matsukura, F. et al. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004). https://doi.org/10.1038/nature02441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02441

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing