Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons

Abstract

Of the 1,000 odorant receptor (OR) genes in the mouse genome, an olfactory sensory neuron (OSN) is thought to express one gene, from one allele. This is reminiscent of immunoglobulin and T-cell receptor genes, which undergo DNA rearrangements in lymphocytes. Here, we test the hypothesis that OR gene choice is controlled by DNA rearrangements in OSNs. Using permanent genetic marking, we show that the choice by an OSN to express an allele of the OR gene M71 is irreversible. Using M71-expressing OSNs as donors for nuclear transfer, we generate blastocysts, embryonic stem (ntES) cell lines and clonal mice. DNA analysis of these cell lines, whose genome is clonally derived from an M71-expressing OSN, does not reveal DNA rearrangements or sequence alterations at the M71 locus. OSNs that differentiate from ntES cells after injection into blastocysts are not restricted to expression of M71 but can express other OR genes. Thus, M71 gene choice is irreversible but is reset upon nuclear transfer, and is not accompanied by genomic alterations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear transfer with olfactory sensory neurons.
Figure 2: Chimaeras produced with OCZ1 ntES cells generated from permanently marked, OMP-expressing OSNs.
Figure 3: Expression of the M71 OR gene is strictly monoallelic and does not switch to other OR genes.
Figure 4: ntES cell lines generated by nuclear transfer from permanently marked, M71-expressing OSNs.
Figure 5: Genomic and phenotypic analysis of M71CZ ntES cell lines.

Similar content being viewed by others

References

  1. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991)

    Article  CAS  Google Scholar 

  2. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994)

    Article  CAS  Google Scholar 

  3. Strotmann, J. et al. Local permutations in the glomerular array of the mouse olfactory bulb. J. Neurosci. 20, 6927–6938 (2001)

    Article  Google Scholar 

  4. Ishii, T. et al. Monoallelic expression of the odourant receptor gene and axonal projection of olfactory sensory neurons. Genes Cells 6, 71–78 (2001)

    Article  CAS  Google Scholar 

  5. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999)

    Article  CAS  Google Scholar 

  6. Zhang, X., Rodriguez, I., Mombaerts, P. & Firestein, S. Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics published online 4 December 2003 (doi:10.1016/j.ygeno.2003.10.009)

  7. Mombaerts, P. Seven-transmembrane proteins as odorant and chemosensory receptors. Science 286, 707–711 (1999)

    Article  CAS  Google Scholar 

  8. Mombaerts, P. How smell develops. Nature Neurosci. 4, 1192–1198 (2001)

    Article  CAS  Google Scholar 

  9. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nature Rev. Neurosci. 5, 263–278 (2004)

    Article  CAS  Google Scholar 

  10. Hozumi, N. & Tonegawa, S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl Acad. Sci. USA 73, 3628–3632 (1976)

    Article  ADS  CAS  Google Scholar 

  11. Tonegawa, S. Somatic generation of immune diversity in vitro. Cell. Dev. Biol. 24, 235–265 (1988)

    Article  Google Scholar 

  12. Wakayama, T., Perry, A. C. F., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice form enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Wakayama, T., Rodriguez, I., Perry, A. C., Yanagimachi, R. & Mombaerts, P. Mice cloned from embryonic stem cells. Proc. Natl Acad. Sci. USA 96, 14984–14989 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Wakayama, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Hochedlinger, K. & Jaenisch, R. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N. Engl. J. Med. 349, 275–286 (2003)

    Article  CAS  Google Scholar 

  17. Vassalli, A., Rothman, A., Feinstein, P., Zapotocky, M. & Mombaerts, P. Minigenes impart odorant receptor-specific axon guidance in the olfactory bulb. Neuron 35, 681–696 (2002)

    Article  CAS  Google Scholar 

  18. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Potter, S. M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21, 9713–9723 (2001)

    Article  CAS  Google Scholar 

  20. Mombaerts, P. Therapeutic cloning in the mouse. Proc. Natl Acad. Sci. USA 100, 11924–11925 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996)

    Article  CAS  Google Scholar 

  22. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C. G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000)

    Article  CAS  Google Scholar 

  23. Tsuboi, A. et al. Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. J. Neurosci. 19, 8409–8418 (1999)

    Article  CAS  Google Scholar 

  24. Zheng, C., Feinstein, P., Bozza, T., Rodriguez, I. & Mombaerts, P. Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 26, 81–91 (2000)

    Article  CAS  Google Scholar 

  25. Bozza, T., Feinstein, P., Zheng, C. & Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22, 3033–3043 (2002)

    Article  CAS  Google Scholar 

  26. Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol. 17, 969–973 (1999)

    Article  CAS  Google Scholar 

  27. Nagy, A. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990)

    CAS  PubMed  Google Scholar 

  28. Serizawa, S. et al. Negative feedback regulation ensures the one receptor–one olfactory neuron rule in mouse. Science 302, 2088–2094 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Lewcock, J. W. & Reed, R. R. A feedback mechanism regulates monoallelic odorant receptor expression. Proc. Natl Acad. Sci. USA 101, 1069–1074 (2004)

    Article  ADS  CAS  Google Scholar 

  30. Hamana, H., Hirono, J., Kizumi, M. & Sato, T. Sensitivity-dependent hierarchical receptor codes for odors. Chem. Senses 28, 87–104 (2003)

    Article  CAS  Google Scholar 

  31. Mombaerts, P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor–one neuron hypothesis revisited. Curr. Opin. Neurobiol. 14, 31–36 (2004)

    Article  CAS  Google Scholar 

  32. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987)

    Article  ADS  CAS  Google Scholar 

  33. Sauer, B. & Henderson, N. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2, 441–449 (1990)

    CAS  Google Scholar 

  34. Dymecki, S. M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl Acad. Sci. USA 93, 6191–6196 (1996)

    Article  ADS  CAS  Google Scholar 

  35. Bunting, M., Bernstein, K. E., Greer, J. M., Capecchi, M. R. & Thomas, K. R. Targeting genes for self-excision in the germ line. Genes Dev. 13, 1524–1528 (1999)

    Article  CAS  Google Scholar 

  36. Chung, Y. G., Mann, M. R., Bartolomei, M. S. & Latham, K. E. Nuclear-cytoplasmic “tug of war” during cloning: effects of somatic cell nuclei on culture medium preferences of preimplantation cloned mouse embryos. Biol. Reprod. 66, 1178–1784 (2002)

    Article  CAS  Google Scholar 

  37. Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of SHP-2 and ERK signaling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43 (1999)

    Article  CAS  Google Scholar 

  38. Hirota, S. et al. Localization of mRNA for c-kit receptor and its ligand in the brain of adult rats: an analysis using in situ hybridization. Mol. Brain Res. 15, 47–54 (1992)

    Article  CAS  Google Scholar 

  39. Ishii, T., Hirota, J. & Mombaerts, P. Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr. Biol. 13, 394–400 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Amuluru, J. Rosenberg and J. Wu for technical assistance in preparing dissociated cells, T. Bozza for helping to construct M71–IRES–tauRFP2 mice, D. Wen for collaborating to set up the tetraploid blastocyst injection technique, H. Sakano for the MOR28 probe, and R. Gao and K. Latham for advice about nuclear transfer. T.I. was supported by a postdoctoral fellowship from the Human Frontier Science Program organization. P.M. is grateful for grant support from the NIH/NIDCD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mombaerts.

Ethics declarations

Competing interests

The authors decline to provide information about competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Ishii, T., Feinstein, P. et al. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004). https://doi.org/10.1038/nature02433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02433

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing