Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surprisingly rapid growth in Neanderthals


Life-history traits correlate closely with dental growth1, so differences in dental growth within Homo can enable us to determine how somatic development has evolved and to identify developmental shifts that warrant species-level distinctions2,3,4. Dental growth can be determined from the speed of enamel formation (or extension rate)5,6. We analysed the enamel extension rate in Homo antecessor (8 teeth analysed), Homo heidelbergensis (106), Homo neanderthalensis (‘Neanderthals’; 146) and Upper Palaeolithic-Mesolithic Homo sapiens (100). Here we report that Upper Palaeolithic-Mesolithic H. sapiens shared an identical dental development pattern with modern humans, but that H. antecessor and H. heidelbergensis had shorter periods of dental growth. Surprisingly, Neanderthals were characterized by having the shortest period of dental growth. Because dental growth is an excellent indicator of somatic development1, our results suggest that Neanderthals developed faster even than their immediate ancestor, H. heidelbergensis. Dental growth became longer and brain size increased from the Plio-Pleistocene in hominid evolution. Neanderthals, despite having a large brain, were characterized by a short period of development. This autapomorphy in growth is an evolutionary reversal, and points strongly to a specific distinction between H. sapiens and H. neanderthalensis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Perikymata packing and rates of crown formation.
Figure 2: Lower canine crown height in Homo species (µm).


  1. Smith, B. H. Dental development and the evolution of life history in Hominidæ. Am. J. Phys. Anthropol. 86, 157–174 (1991)

    Article  Google Scholar 

  2. Beynon, A. D. & Dean, M. C. Distinct dental development patterns in early fossil hominids. Nature 335, 509–514 (1988)

    ADS  CAS  Article  Google Scholar 

  3. Dean, M. C. The dental developmental status of six East African juvenile fossil hominids. J. Hum. Evol. 16, 197–213 (1987)

    Article  Google Scholar 

  4. Dean, C. et al. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 414, 628–631 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Ramirez Rozzi, F. Développement dentaire des hominidés du Plio-Pléistocène. Taux d'extension de l'émail chez les hominidés fossiles. C.R. Acad. Sci. 325, 293–296 (1997)

    Google Scholar 

  6. Shellis, R. P. Utilization of periodic markings in enamel to obtain information on tooth growth. J. Hum. Evol. 35, 387–400 (1998)

    CAS  Article  Google Scholar 

  7. Ramirez Rozzi, F. V. in Human Evolution through Developmental Change (eds MacNamara, K. J. & Minugh-Purvis, N.) 319–348 (Johns Hopkins Univ. Press, Baltimore, 2002)

    Google Scholar 

  8. FitzGerald, C. M. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. J. Hum. Evol. 35, 371–386 (1998)

    CAS  Article  Google Scholar 

  9. Reid, D. J. & Dean, M. C. Brief communication: The timing of linear hypoplasia on human anterior teeth. Am. J. Phys. Anthropol. 113, 135–139 (2000)

    CAS  Article  Google Scholar 

  10. Schwartz, G. T. & Dean, M. C. The ontogeny of canine dimorphism in extant hominoids. Am. J. Phys. Anthropol. 115, 269–283 (2001)

    CAS  Article  Google Scholar 

  11. Schwartz, G. T., Reid, D. J. & Dean, M. C. Development aspects of sexual dimorphism in hominoid canine. Int. J. Primatol. 22, 837–860 (2001)

    Article  Google Scholar 

  12. Dean, M. C. & Reid, D. J. Perikymata spacing and distribution on hominid anterior teeth. Am. J. Phys. Anthropol. 116, 209–215 (2001)

    CAS  Article  Google Scholar 

  13. Dean, M. C. in Evolutionary History of the Robust Australopithecines (ed. Grine, F. E.) 107–112 (Aldine de Gruyter, New York, 1988)

    Google Scholar 

  14. Dean, M. C. Variation in the developing root cone angle of the permanent mandibular teeth of modern man and certain fossil hominids. Am. J. Phys. Anthropol. 68, 233–238 (1985)

    CAS  Article  Google Scholar 

  15. Dean, M. C., Stringer, C. B. & Bromage, T. G. Age at death for the Neanderthal child from Devil's Tower, Gibraltar and the implications for studies of general growth and development in Neanderthals. Am. J. Phys. Anthropol. 70, 301–309 (1986)

    CAS  Article  Google Scholar 

  16. Ramirez Rozzi, F. V. Microstructure et développement de l'émail dentaire du néandertalien de Zafarraya, Espagne. Temps de formation et hypocalcification de l'émail dentaire. C.R. Acad. Sci. 316, 1635–1642 (1993)

    Google Scholar 

  17. Wolpoff, M. H. The Krapina dental remains. Am. J. Phys. Anthropol. 50, 67–114 (1979)

    Article  Google Scholar 

  18. Zilberman, U. & Smith, P. A comparison of tooth structure in Neanderthals and early Homo sapiens sapiens: A radiographic study. J. Anat. 180, 387–393 (1992)

    PubMed  PubMed Central  Google Scholar 

  19. Ramirez Rozzi, F. V. Comment on the causes of thin enamel in Neanderthals. Am. J. Phys. Anthropol. 99, 625–626 (1996)

    CAS  Article  Google Scholar 

  20. Bermúdez de Castro, J. M. et al. A modern human pattern of dental development in Lower Pleistocene hominids from Atapuerca-TD6 (Spain). Proc. Natl Acad. Sci. USA 96, 4210–4213 (1999)

    ADS  Article  Google Scholar 

  21. Bermúdez de Castro, J. M. & Rosas, A. Pattern of dental development in Hominid XVIII from the Middle Pleistocene Atapuerca-Sima de los Huesos site (Spain). Am. J. Phys. Anthropol. 114, 325–330 (2001)

    Article  Google Scholar 

  22. Tompkins, R. L. Relative dental development of Upper Pleistocene hominids compared to human population variation. Am. J. Phys. Anthropol. 99, 103–118 (1996)

    CAS  Article  Google Scholar 

  23. Boughner, J. & Dean, M. C. Does space in the jaw influence the timing of molar crown Initiation? A model using baboons (Papio anubis) and great apes (Pan troglodytes, Pan paniscus). J. Hum. Evol. (in the press)

  24. Smith, B. H. Dental development as a measure of life history in primates. Evolution 43, 683–688 (1989)

    ADS  Article  Google Scholar 

  25. Ponce de Leon, M. S. & Zollikofer, C. P. E. Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature 412, 534–538 (2001)

    ADS  CAS  Article  Google Scholar 

  26. Charnov, E. L. Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology (Oxford Univ. Press, Oxford, 1993)

    Google Scholar 

  27. Martin, R. D. Human Brain Evolution in an Ecological Context (American Museum of Natural History, New York, 1983)

    Google Scholar 

  28. Stearns, S. The Evolution of Life Histories (Oxford Univ. Press, Oxford, 1992)

    Google Scholar 

  29. Beynon, A. D. Replication technique for studying microstructure in fossil enamel. Scanning Microsc. 1, 663–669 (1987)

    CAS  PubMed  Google Scholar 

  30. Arsuaga, J. L., Martinez, I., Gracia, A. & Lorenzo, C. The Sima de los Huesos crania (Sierra de Atapuerca, Spain). A comparative study. J. Hum. Evol. 33, 219–282 (1997)

    CAS  Article  Google Scholar 

Download references


We thank J. Radovcic, G. Jambresic, H. and M.-A. de Lumley, M. Tavoso, D. Grimaud-Hervé, Ph. Mennecier, A. Chech, J. Léopold-Kerymel, C. Schwab, G. Manzi, J. Egocheaga, C. Barroso-Ruiz, D. Gommery, J. Chaline, J.-L. Arsuaga and E. Carbonel for access to fossils under their care; A. Vialet, M. Tersis, M.-F. Leroy, M. Garcia, C. Fitzgerald, C. Dean, M. Fineberg and M. Sardi for help in different aspects of this research; and C. Dean, C. Fitzgerald, D. Reid, H. Liversidge and L. Bondioli for discussions on dental growth. This work was supported by the CNRS program OHLL (J.J. Hublin) and by the Spanish Government.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fernando V. Ramirez Rozzi.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramirez Rozzi, F., Bermudez de Castro, J. Surprisingly rapid growth in Neanderthals. Nature 428, 936–939 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing