Abstract
Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to two regions of S. cerevisiae, as expected for whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived functions.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Evolution of pathogenicity-associated genes in Rhizoctonia solani AG1-IA by genome duplication and transposon-mediated gene function alterations
BMC Biology Open Access 01 February 2023
-
Reconstruction of hundreds of reference ancestral genomes across the eukaryotic kingdom
Nature Ecology & Evolution Open Access 16 January 2023
-
Systematic analysis of Histidine photosphoto transfer gene family in cotton and functional characterization in response to salt and around tolerance
BMC Plant Biology Open Access 28 November 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Ohno, S. Evolution by Gene Duplication (Allen and Unwin, London, 1970)
Mayer, V. W. & Aguilera, A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat. Res. 231, 177–186 (1990)
Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997)
Seoighe, C. & Wolfe, K. H. Updated map of duplicated regions in the yeast genome. Gene 238, 253–261 (1999)
Melnick, L. & Sherman, F. The gene clusters ARC and COR on chromosomes 5 and 10, respectively, of Saccharomyces cerevisiae share a common ancestry. J. Mol. Biol. 233, 372–388 (1993)
Goffeau, A. et al. Life with 6000 genes. Science 274, 546, 563–567 (1996)
Philippsen, P. et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature 387, 93–98 (1997)
Mewes, H. W. et al. Overview of the yeast genome. Nature 387, 7–65 (1997)
Coissac, E., Maillier, E. & Netter, P. A comparative study of duplications in bacteria and eukaryotes: the importance of telomeres. Mol. Biol. Evol. 14, 1062–1074 (1997)
Friedman, R. & Hughes, A. L. Gene duplication and the structure of eukaryotic genomes. Genome Res. 11, 373–381 (2001)
Hughes, T. R. et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genet. 25, 333–337 (2000)
Piskur, J. Origin of the duplicated regions in the yeast genomes. Trends Genet. 17, 302–303 (2001)
Koszul, R., Caburet, S., Dujon, B. & Fischer, G. Eukaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J. 23, 234–243 (2004)
Llorente, B. et al. Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett. 487, 101–112 (2000)
Llorente, B. et al. Genomic exploration of the hemiascomycetous yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae. FEBS Lett. 487, 122–133 (2000)
Wong, S., Butler, G. & Wolfe, K. H. Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proc. Natl Acad. Sci. USA 99, 9272–9277 (2002)
Langkjaer, R. B., Cliften, P. F., Johnston, M. & Piskur, J. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421, 848–852 (2003)
Kurtzman, C. P., Lynch, M. & Force, A. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4, 233–245 (2003)
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003)
Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000)
Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999)
Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Selection in the evolution of gene duplications. Genome Biol. 3, RESEARCH0008.1–0008.9 (2002)
Shore, D., Squire, M. & Nasmyth, K. A. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J. 3, 2817–2823 (1984)
Bell, S. P., Kobayashi, R. & Stillman, B. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262, 1844–1849 (1993)
Benard, L., Carroll, K., Valle, R. C., Masison, D. C. & Wickner, R. B. The ski7 antiviral protein is an EF1-alpha homolog that blocks expression of non-Poly(A) mRNA in Saccharomyces cerevisiae. J. Virol. 73, 2893–2900 (1999)
Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)
Sanz, M., Trilla, J. A., Duran, A. & Roncero, C. Control of chitin synthesis through Shc1p, a functional homologue of Chs4p specifically induced during sporulation. Mol. Microbiol. 43, 1183–1195 (2002)
Lorenz, M. C. & Heitman, J. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150, 1443–1457 (1998)
Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999)
Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66 (2003)
Sharp, P. M. & Li, W. H. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987)
Sarthy, A. V. et al. Identification and kinetic analysis of a functional homolog of elongation factor 3, YEF3 in Saccharomyces cerevisiae. Yeast 14, 239–253 (1998)
Boles, E. et al. Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate. J. Bacteriol. 179, 2987–2993 (1997)
Hughes, M. K. & Hughes, A. L. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol. Biol. Evol. 10, 1360–1369 (1993)
Gallardo, M. H., Bickham, J. W., Honeycutt, R. L., Ojeda, R. A. & Kohler, N. Discovery of tetraploidy in a mammal. Nature 401, 341 (1999)
Bailey, G. S., Poulter, R. T. & Stockwell, P. A. Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. Proc. Natl Acad. Sci. USA 75, 5575–5579 (1978)
Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000)
Blanc, G., Barakat, A., Guyot, R., Cooke, R. & Delseny, M. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12, 1093–1101 (2000)
Sidow, A. Gen(om)e duplications in the evolution of early vertebrates. Curr. Opin. Genet. Dev. 6, 715–722 (1996)
Pebusque, M. J., Coulier, F., Birnbaum, D. & Pontarotti, P. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol. Biol. Evol. 15, 1145–1159 (1998)
Batzoglou, S. et al. ARACHNE: a whole-genome shotgun assembler. Genome Res. 12, 177–189 (2002)
Jaffe, D. B. et al. Whole-genome sequence assembly for mammalian genomes: arachne 2. Genome Res. 13, 91–96 (2003)
Kellis, M., Patterson, N., Birren, B., Berger, B. & Lander, E. S. Methods in comparative genomics: genome correspondence, gene identification, regulatory motif discovery. J. Comput. Biol. (in the press)
Turner, R. J., Lovato, M. & Schimmel, P. One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J. Biol. Chem. 275, 27681–27688 (2000)
Kurtzman, C. P. & Robnett, C. J. Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res. 3, 417–432 (2003)
Acknowledgements
We thank I. Roberts for providing strains; M. Endrizzi, L.-J. Ma, D. Qi and the staff of the MIT/Whitehead Institute Center for Genome Research who generated the shotgun sequence from Kluyveromyces waltii; J. Butler and the Arachne assembly team who generated the genome assembly; D. Bartel, S. Calvo, J. Galagan, D. Jaffe and J. Vinson for discussions and comments on the manuscript; and G. Fink and A. Murray for discussions and advice.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
S1_Assembly (ZIP 2.91 MB)
Assembly_stats.xls; 16 kb; Description of assembly, scaffolds, contigs, and chromosomes
Kwal_contigs.fasta; 10,797 kb; The raw nucleotide sequence of all contigs
Kwal_scaffolds.txt; 14 kb; Scaffolds (supercontigs) giving relative order, orientation, and spacing of contigs
S2_ORFs (ZIP 3.39 MB)
predicted_ORFs.fasta; 7,459 kb; Raw nucleotide sequence of all predicted Open Reading Frames (ORFs)
predicted_proteins.fasta; 2,528 kb; Protein translation of all Open Reading Frames (ORFs)
S3_Annotation (ZIP 1.17 MB)
Kwal_forward.txt; 993 kb; Annotation of each K. waltii gene and its best match to S. cerevisiae (forward: Kwal => Scer)
Kwal_forward_full.txt; 1,482 kb; Annotation of each K. waltii gene and all its matches to S. cerevisiae (forward: Kwal => Scer)
Kwal_homology_groups_large.txt; 105 kb; Gene families (groups of genes with ambiguous correspondence) that contain at least 4 members
Kwal_homology_groups_small.txt; 182 kb; Gene families (groups of genes with ambiguous correspondence) that contain 3 members of fewer
Kwal_reverse.txt; 776 kb; Coordinates of each S. cerevisiae gene and its best match in K. waltii (reverse: Kwal ≤ Scer)
Kwal_reverse_full.txt; 1,086 kb; Coordinates of each S. cerevisiae gene and all its matches in K. waltii (reverse: Kwal ≤ Scer)
S4_Blocks (ZIP 260 KB)
Kwal_synteny_blocks.txt; 28 kb; Blocks of conserved gene order (synteny) between the two species
Matches_by_chromosome.xls; 420 kb; Gene correspondence, grouped by chromosome (shows duplicate mapping)
Matches_by_chromosome_with_syn.xls; 480 kb; Gene correspondence, grouped by chromosome with synteny block information
Paired_regions.xls; 100 kb; Paired regions in S. cerevisiae as defined by blocks of doubly conserved synteny (DCS)
S5_Poster (ZIP 3.75 MB)
all_scaffolds.pdf; 1,200 kb; Detailed visualization of gene correspondence for every K. waltii chromosome
poster.pdf; 1,127 kb; Detailed visualization of gene correspondence for all K. waltii chromosomes (single page)
S6_Visualization (ZIP 12.3 MB)
all_tiles.html; 257 kb; Detailed visualization of paired sister regions interleaved with K. waltii in 253 DCS blocks
tile_000.jpg; 71 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_001.jpg; 74 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_002.jpg; 120 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_003.jpg; 119 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_004.jpg; 122 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_005.jpg; 113 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_006.jpg; 120 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_007.jpg; 119 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_008.jpg; 104 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_009.jpg; 107 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_010.jpg; 129 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_011.jpg; 78 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_012.jpg; 52 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_013.jpg; 125 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_014.jpg; 105 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_015.jpg; 115 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_016.jpg; 122 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_017.jpg; 73 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_018.jpg; 77 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_019.jpg; 129 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_020.jpg; 38 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_021.jpg; 71 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_022.jpg; 128 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_023.jpg; 107 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_024.jpg; 97 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_025.jpg; 57 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
(...) (browse).;; Browse
tile_250.jpg; 79 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_251.jpg; 115 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
tile_252.jpg; 80 kb; Tiling of K. waltii genome in duplicate regions. See all_tiles.html for index of genes in duplicate regions
S7_DupBlocks (ZIP 5.26 MB)
scer_pairs_01.pdf; 9 kb; S. cerevisiae chromosome 1, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_02.pdf; 12 kb; S. cerevisiae chromosome 2, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_03.pdf; 11 kb; S. cerevisiae chromosome 3, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_04.pdf; 14 kb; S. cerevisiae chromosome 4, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_05.pdf; 12 kb; S. cerevisiae chromosome 5, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_06.pdf; 11 kb; S. cerevisiae chromosome 6, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_07.pdf; 14 kb; S. cerevisiae chromosome 7, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_08.pdf; 12 kb; S. cerevisiae chromosome 8, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_09.pdf; 12 kb; S. cerevisiae chromosome 9, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_10.pdf; 13 kb; S. cerevisiae chromosome 10, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_11.pdf; 12 kb; S. cerevisiae chromosome 11, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_12.pdf; 14 kb; S. cerevisiae chromosome 12, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_13.pdf; 13 kb; S. cerevisiae chromosome 13, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_14.pdf; 12 kb; S. cerevisiae chromosome 14, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_15.pdf; 13 kb; S. cerevisiae chromosome 15, connected with its sister regions in S. cerevisiae chromosomes
scer_pairs_16.pdf; 13 kb; S. cerevisiae chromosome 16, connected with its sister regions in S. cerevisiae chromosomes
S8_DupGenes (ZIP 5.15 MB)
Browse.html; 141 kb; Browse three-way nucleotide/protein/translation alignments for all 457 gene pairs
protein.tgz; 545 kb; Download all protein alignments
nucleotide.tgz; 977 kb; Download all nucleotide alignments
translate.tgz; 961 kb; Download all frame-aware nucleotide alignments (nucleotide alignments that preserve translation)
YAL015C_YOL043Cp.txt; 2 kb; Alignment for duplicated gene pair and its K. waltii ortholog (p = protein)
YAL015C_YOL043Ct.txt; 6 kb; Alignment for duplicated gene pair and its K. waltii ortholog (t = translate. Nucleotide alignment that preserves translation)
YAL017W_YOL045W.txt; 21 kb; Second gene pair => Nucleotide
YAL017W_YOL045Wp.txt; 7 kb; Second gene pair => Protein
YAL017W_YOL045Wt.txt; 21 kb; Second gene pair => Frame-aware nucleotide
YAL023C_YOR321W.txt; 11 kb; (... and so on ...)
(...) Browse.;; Browse all alignments (nucleotide / protein/ translate)
YOR256C_YPL176C.txt; 12 kb; 457th gene pair => Nucleotide
YOR256C_YPL176Cp.txt; 4 kb; 457th gene pair => Protein
YOR256C_YPL176Ct.txt; 12 kb; 457th gene pair => Frame-aware nucleotide
S9_Trees (ZIP 180 KB)
Tree_lengths_protein.txt; 25 kb; Protein-divergence branch lengths for gene pairs with S. bayanus and K. waltii orthologs
Fiveway_trees.txt; 169 kb; Protein-divergence trees for gene pairs with S. bayanus and K. waltii orthologs
Duplicated_Pairs.xls; 269 kb; Protein divergence absolute and relative rates for all pairs and their K. waltii ortholog
Nucleotide_Divergence.xls; 202 kb; Nucleotide divergence absolute and relative rates for all pairs and their K. waltii ortholog
S10_Centromeres (ZIP 1.05 MB)
Centromeres.xls; 17 kb; K. waltii centromere location, sequence and pairing with S. cerevisiae.
Chr6_16.jpg; 69 kb; Visualization of K. waltii centromere 1 and its pairing with Cen6:Cen16 in S. cerevisiae
Chr2_4.jpg; 117 kb; Visualization of K. waltii centromere 2 and its pairing with Cen2:Cen4 in S. cerevisiae
Chr2_4b.jpg; 62 kb; Visualization of K. waltii centromere 2 and its pairing with Cen2:Cen4 in S. cerevisiae
Chr8_11.jpg; 112 kb; Visualization of K. waltii centromere 3 and its pairing with Cen8:Cen11 in S. cerevisiae
Chr1_7.jpg; 97 kb; Visualization of K. waltii centromere 4 and its pairing with Cen1:Cen7 in S. cerevisiae
chr_10_12.jpg; 100 kb; Visualization of K. waltii centromere 5 and its pairing with Cen10:Cen12 in S. cerevisiae
Chr5_9.jpg; 123 kb; Visualization of K. waltii centromere 6 and its pairing with Cen5:Cen9 in S. cerevisiae
chr13_15.jpg; 127 kb; Visualization of K. waltii centromere 7 and its pairing with Cen13:Cen15 in S. cerevisiae
chr3_14.jpg; 111 kb; Visualization of K. waltii centromere 8 and its pairing with Cen3:Cen14 in S. cerevisiae
Telomere_hits_all.xls 947 kb Blast hits of telomeric repeat elements against K. waltii and S. cerevisiae.
Rights and permissions
About this article
Cite this article
Kellis, M., Birren, B. & Lander, E. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004). https://doi.org/10.1038/nature02424
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature02424
This article is cited by
-
Evolution of pathogenicity-associated genes in Rhizoctonia solani AG1-IA by genome duplication and transposon-mediated gene function alterations
BMC Biology (2023)
-
Reconstruction of hundreds of reference ancestral genomes across the eukaryotic kingdom
Nature Ecology & Evolution (2023)
-
Systematic analysis of Histidine photosphoto transfer gene family in cotton and functional characterization in response to salt and around tolerance
BMC Plant Biology (2022)
-
Intron-mediated induction of phenotypic heterogeneity
Nature (2022)
-
Evolution of hes gene family in vertebrates: the hes5 cluster genes have specifically increased in frogs
BMC Ecology and Evolution (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.