Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo

Abstract

Patterning of the mouse embryo along the anteroposterior axis during body plan development requires migration of the distal visceral endoderm (DVE) towards the future anterior side by a mechanism that has remained unknown. Here we show that Nodal signalling and the regionalization of its antagonists are required for normal migration of the DVE. Whereas Nodal signalling provides the driving force for DVE migration by stimulating the proliferation of visceral endoderm cells, the antagonists Lefty1 and Cerl determine the direction of migration by asymmetrically inhibiting Nodal activity on the future anterior side.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Asymmetric expression of Lefty1 and Cerl before DVE migration.
Figure 2: Ectopic expression of Lefty1 or Cerl directs DVE migration.
Figure 3: Patterns of VE cell proliferation in wild-type and various mutant embryos.
Figure 4: Nodal antagonists inhibit and Nodal promotes VE cell proliferation.
Figure 5: Anteroposterior patterning defects in the absence of Lefty1 and Cerl.

Similar content being viewed by others

References

  1. Beddington, R. S. & Robertson, E. J. Anterior patterning in mouse. Trends Genet. 14, 277–284 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Beddington, R. S. & Robertson, E. J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, P. Q., Brown, A. & Beddington, R. S. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125, 85–94 (1998)

    CAS  PubMed  Google Scholar 

  4. Meno, C. et al. Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 2, 513–524 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Belo, J. A. et al. Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 68, 45–57 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Belo, J. A. et al. Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26, 265–270 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Kimura, C. et al. Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev. Biol. 225, 304–321 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Perea-Gomez, A. et al. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3, 745–756 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto, M. et al. The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse. Genes Dev. 15, 1242–1256 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Norris, D. P. & Robertson, E. J. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev. 13, 1575–1588 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Collignon, J., Varlet, I. & Robertson, E. J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Belachew, S. et al. Cyclin-dependent kinase-2 controls oligodendrocyte progenitor cell cycle progression and is downregulated in adult oligodendrocyte progenitors. J. Neurosci. 22, 8553–8562 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meno, C. et al. lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94, 287–297 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Simpson, E. H. et al. The mouse Cer1 (Cerberus related or homologue) gene is not required for anterior pattern formation. Dev. Biol. 213, 202–206 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Shawlot, W., Min Deng, J., Wakamiya, M. & Behringer, R. R. The cerberus-related gene, Cerr1, is not essential for mouse head formation. Genesis 26, 253–258 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Saijoh, Y. et al. Distinct transcriptional regulatory mechanisms underlie left-right asymmetric expression of lefty-1 and lefty-2. Genes Dev. 13, 259–269 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakuma, R. et al. Inhibition of Nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7, 401–412 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huelsken, J. et al. Requirement for beta-catenin in anterior-posterior axis formation in mice. J. Cell Biol. 148, 567–578 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Robertis, E. M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nature Rev. Genet. 1, 171–181 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Schier, A. F. Axis formation and patterning in zebrafish. Curr. Opin. Genet. Dev. 11, 393–404 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Chen, Y. & Schier, A. F. Lefty proteins are long-range inhibitors of squint-mediated nodal signaling. Curr. Biol. 12, 2124–2128 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, A. M., Thisse, B., Thisse, C. & Wright, C. V. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in Xenopus. Development 127, 1049–1061 (2000)

    CAS  PubMed  Google Scholar 

  24. Meno, C. et al. Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol. Cell 4, 287–298 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Skromne, I. & Stern, C. D. Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development 128, 2915–2927 (2001)

    CAS  PubMed  Google Scholar 

  26. Bertocchini, F. & Stern, C. D. The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev. Cell 3, 735–744 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Miller, J. R. et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eyal-Giladi, H., Goldberg, M., Refael, H. & Avner, O. A direct approach to the study of the effect of gravity on axis formation in birds. Adv. Space Res. 14, 271–279 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Mizushima, S. & Nagata, S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18, 5322 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hayashi, Y., Koike, M., Matsutani, M. & Hoshino, T. Effects of fixation time and enzymatic digestion on immunohistochemical demonstration of bromodeoxyuridine in formalin-fixed, paraffin-embedded tissue. J. Histochem. Cytochem. 36, 511–514 (1988)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Robertson for NodallacZ mutant mice; R. Beddington for the Hex probe; V. Gallo for expression vectors for Cdk and dominant negative Cdk; and N. Mine and Y. Ohnishi for help in improving the lipofection procedure. We also thank S. Srinivas for exchanging unpublished data. This work was supported by grants from the Ministry of Education, Science, Sports, and Culture of Japan (to C.M. and H.H.), a grant from CREST (Core Research for Evolutional Science and Technology) of the Japan Science and Technology Corporation (to H.H.), a grant from the NIH (to R.R.B.), and a grant from the Association pour la Recherche sur le Cancer and by funds from the INSERM, the CNRS and the Hopital Universitaire de Strasbourg (to S.-L.A.). M.Y. is a recipient of a fellowship from the Japan Society for the Promotion of Science for Japanese Junior Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hamada.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Includes supplementary figure legends and supplementary methods. (DOC 52 kb)

Supplementary Figure 1

Delayed migration of the DVE in FoxH1 mutant embryos. (PDF 213 kb)

Supplementary Figure 2

Nodal expression in FoxH1 mutant embryos. (PDF 856 kb)

Supplementary Figure 3

(see full legend) (PDF 1372 kb)

Supplementary Figure 4

Model for A-P determination by Nodal antagonists. (PDF 257 kb)

Supplementary Figure 5

Introduction of a lacZ-expression vector by lipofection. (PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, M., Saijoh, Y., Perea-Gomez, A. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004). https://doi.org/10.1038/nature02418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02418

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing