Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergence of cooperation and evolutionary stability in finite populations

Abstract

To explain the evolution of cooperation by natural selection has been a major goal of biologists since Darwin. Cooperators help others at a cost to themselves, while defectors receive the benefits of altruism without providing any help in return. The standard game dynamical formulation is the ‘Prisoner's Dilemma’1,2,3,4,5,6,7,8,9,10,11, in which two players have a choice between cooperation and defection. In the repeated game, cooperators using direct reciprocity cannot be exploited by defectors, but it is unclear how such cooperators can arise in the first place12,13,14,15. In general, defectors are stable against invasion by cooperators. This understanding is based on traditional concepts of evolutionary stability and dynamics in infinite populations16,17,18,19,20. Here we study evolutionary game dynamics in finite populations21,22,23,24,25. We show that a single cooperator using a strategy like ‘tit-for-tat’ can invade a population of defectors with a probability that corresponds to a net selective advantage. We specify the conditions required for natural selection to favour the emergence of cooperation and define evolutionary stability in finite populations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Selection can favour the replacement of AllD by TFT in finite populations.
Figure 2: The 1/3-law of frequency-dependent evolution.
Figure 3: A strategy is ESSN if it is protected by selection against invasion and replacement by another strategy for given N and any w > 0.

References

  1. Trivers, R. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971)

    Article  Google Scholar 

  2. Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. Axelrod, R. The Evolution of Cooperation (Basic Books, New York, 1984)

    MATH  Google Scholar 

  4. Milinski, M. Tit for tat in sticklebacks and the evolution of cooperation. Nature 325, 433–435 (1987)

    ADS  CAS  Article  Google Scholar 

  5. May, R. M. More evolution of cooperation. Nature 327, 15–17 (1987)

    ADS  Article  Google Scholar 

  6. Dugatkin, L. A. Cooperation Among Animals (Oxford Univ. Press, Oxford, UK, 1997)

    Google Scholar 

  7. Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001)

    ADS  CAS  Article  Google Scholar 

  8. Fehr, E. & Fischbacher, U. The nature of human altruism. Nature 425, 785–791 (2003)

    ADS  CAS  Article  Google Scholar 

  9. Hammerstein, P. (ed.) Genetic and Cultural Evolution of Cooperation (MIT Press, Cambridge, Massachusetts, 2003)

  10. Boyd, R., Gintis, H., Bowels, S. & Richerson, P. J. The evolution of altruistic punishment. Proc. Natl Acad. Sci. USA 100, 3531–3535 (2003)

    ADS  CAS  Article  Google Scholar 

  11. Fudenberg, D. & Maskin, E. Evolution and cooperation in noisy repeated games. Am. Econ. Rev. 80, 274–279 (1990)

    Google Scholar 

  12. Nowak, M. A. & Sigmund, K. Tit for tat in heterogeneous populations. Nature 355, 250–253 (1992)

    ADS  Article  Google Scholar 

  13. Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    ADS  Article  Google Scholar 

  14. Killingback, T. & Doebeli, M. Self-organized criticality in spatial evolutionary game theory. J. Theor. Biol. 191, 335–340 (1998)

    CAS  Article  Google Scholar 

  15. Fudenberg, D. & Harris, C. Evolutionary dynamics with aggregate shocks. J. Econ. Theor. 57, 420–441 (1992)

    MathSciNet  Article  Google Scholar 

  16. Maynard Smith, J. & Price, G. R. Logic of animal conflict. Nature 246, 15–18 (1973)

    Article  Google Scholar 

  17. Taylor, P. D. & Jonker, L. B. Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978)

    MathSciNet  Article  Google Scholar 

  18. Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, Cambridge, UK, 1982)

    Book  Google Scholar 

  19. Hofbauer, J. & Sigmund, K. Evolutionary Games and Population Dynamics (Cambridge Univ. Press, Cambridge, UK, 1998)

    Book  Google Scholar 

  20. Hofbauer, J. & Sigmund, K. Evolutionary game dynamics. Bull. Am. Math. Soc. 40, 479–519 (2003)

    MathSciNet  Article  Google Scholar 

  21. Riley, J. G. Evolutionary equilibrium strategies. J. Theor. Biol. 76, 109–123 (1979)

    MathSciNet  CAS  Article  Google Scholar 

  22. Schaffer, M. Evolutionary stable strategies for a finite population and a variable contest size. J. Theor. Biol. 132, 469–478 (1988)

    CAS  Article  Google Scholar 

  23. Fogel, G., Andrews, P. & Fogel, D. On the instability of evolutionary stable strategies in small populations. Ecol. Model. 109, 283–294 (1998)

    Article  Google Scholar 

  24. Ficci, S. & Pollack, J. Effects of Finite Populations on Evolutionary Stable Strategies. Proc. 2000 Genetic and Evolutionary Computation Conf. (ed. Whitley, D.) 927–934 (Morgan-Kaufmann, San Francisco, 2000)

    Google Scholar 

  25. Schreiber, S. Urn models, replicator processes, and random genetic drift. Siam. J. Appl. Math. 61, 2148–2167 (2001)

    MathSciNet  Article  Google Scholar 

  26. Moran, P. A. P. The Statistical Processes of Evolutionary Theory (Clarendon, Oxford, UK, 1962)

    MATH  Google Scholar 

  27. Karlin, S. & Taylor, H. M. A First Course in Stochastic Processes 2nd edn (Academic, London, 1975)

    MATH  Google Scholar 

  28. Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)

    ADS  CAS  Article  Google Scholar 

  29. Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967)

    ADS  CAS  Article  Google Scholar 

  30. Nowak, M. A. & Sigmund, K. A strategy of win-stay, lose-shift that outperforms tit for tat in Prisoner's Dilemma. Nature 364, 56–58 (1993)

    ADS  CAS  Article  Google Scholar 

  31. Binmore, K. & Samuelson, L. Evolutionary stability in repeated games played by the finite automata. J. Econ. Theor. 57, 278–305 (1992)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The Program for Evolutionary Dynamics is supported by J. Epstein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Nowak.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nowak, M., Sasaki, A., Taylor, C. et al. Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646–650 (2004). https://doi.org/10.1038/nature02414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02414

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing