Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Protein-only transmission of three yeast prion strains

Abstract

Key questions regarding the molecular nature of prions are how different prion strains can be propagated by the same protein and whether they are only protein1,2,3. Here we demonstrate the protein-only nature of prion strains in a yeast model, the [PSI] genetic element that enhances the read-through of nonsense mutations in the yeast Saccharomyces cerevisiae4,5. Infectious fibrous aggregates containing a Sup35 prion-determining amino-terminal fragment labelled with green fluorescent protein were purified from yeast harbouring distinctive prion strains. Using the infectious aggregates as ‘seeds’, elongated fibres were generated in vitro from the bacterially expressed labelled prion protein. De novo generation of strain-specific [PSI] infectivity was demonstrated by introducing sheared fibres into uninfected yeast hosts. The cross-sectional morphology of the elongated fibres generated in vitro was indistinguishable from that of the short yeast seeds, as visualized by electron microscopy. Electron diffraction of the long fibres showed the 4.7 Å spacing characteristic of the cross-beta structure of amyloids. The fact that the amyloid fibres nucleated in vitro propagate the strain-specific infectivity of the yeast seeds implies that the heritable information of distinct prion strains must be encoded by different, self-propagating cross-beta folding patterns of the same prion protein.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Proof of strain-specific infectivity of [PSI] prion aggregates.
Figure 2: [PSI] amyloid fibres.

References

  1. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Dickinson, A. G. & Outram, G. W. Genetic aspects of unconventional virus infections: the basis of the virino hypothesis. Ciba Found. Symp. 135, 63–83 (1988)

    CAS  PubMed  Google Scholar 

  3. Weissmann, C. A ‘unified theory’ of prion propagation. Nature 352, 679–683 (1991)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. Cox, B. S., Tuite, M. F. & McLaughlin, C. S. The psi factor of yeast: a problem in inheritance. Yeast 4, 159–178 (1988)

    CAS  Article  PubMed  Google Scholar 

  5. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994)

    ADS  CAS  Article  PubMed  Google Scholar 

  6. Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V. V. & Smirnov, V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. King, C.-Y. Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J. Mol. Biol. 307, 1247–1260 (2001)

    CAS  Article  PubMed  Google Scholar 

  8. Skerra, A. & Schmidt, T. G. Use of the Strep-Tag and streptavidin for detection and purification of recombinant proteins. Methods Enzymol. 326, 271–304 (2000)

    CAS  Article  PubMed  Google Scholar 

  9. Dickinson, A. G. et al. Extraneural competition between different scrapie agents leading to loss of infectivity. Nature 253, 556 (1975)

    ADS  CAS  Article  PubMed  Google Scholar 

  10. Maddelein, M. L. & Wickner, R. B. Two prion-inducing regions of Ure2p are nonoverlapping. Mol. Cell. Biol. 19, 4516–4524 (1999)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880–884 (1995)

    ADS  CAS  Article  PubMed  Google Scholar 

  12. Kushnirov, V. V. & Ter-Avanesyan, M. D. Structure and replication of yeast prions. Cell 94, 13–16 (1998)

    CAS  Article  PubMed  Google Scholar 

  13. Sparrer, H. E., Santoso, A., Szoka, F. C. & Weissman, J. S. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted Sup35 protein. Science 289, 595–599 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  14. Chernoff, Y. O., Derkach, I. L. & Inge-Vechtomov, S. G. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24, 268–270 (1993)

    CAS  Article  PubMed  Google Scholar 

  15. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liebman, S. W. Progress toward an ultimate proof of the prion hypothesis. Proc. Natl Acad. Sci. USA 99, 9098–9100 (2002)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Tuite, M. F. & Cox, B. S. Propagation of yeast prions. Nature Rev. Mol. Cell. Biol. 4, 878–890 (2003)

    CAS  Article  Google Scholar 

  18. Uptain, S. M., Sawicki, G. J., Caughey, B. & Lindquist, S. L. Strains of [PSI+] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J. 20, 6236–6245 (2001)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Liu, J.-J., Sondheimer, N. & Lindquist, S. L. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc. Natl Acad. Sci. USA 99, 16446–16453 (2002)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Way, M., Pope, B., Gooch, J., Hawkins, M. & Weeds, A. G. Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J. 9, 4103–4109 (1990)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990)

    CAS  Article  PubMed  Google Scholar 

  22. Sherman, F. Getting started with yeast. Methods Enzymol. 194, 3–21 (1991)

    CAS  Article  PubMed  Google Scholar 

  23. Harashima, S., Takagi, A. & Oshima, Y. Transformation of protoplasted yeast cells is directly associated with cell fusion. Mol. Cell. Biol. 4, 771–778 (1984)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Rose, M. D., Price, B. R. & Fink, G. R. Saccharomyces cerevisiae nuclear fusion requires prior activation by alpha factor. Mol. Cell. Biol. 6, 3490–3497 (1986)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Wischik, C. et al. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc. Natl Acad. Sci. USA 85, 4884–4888 (1988)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Baxa, U. et al. Architecture of Ure2p prion filaments. J. Biol. Chem. 278, 43717–43727 (2003)

    CAS  Article  PubMed  Google Scholar 

  27. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. L. D. Caspar for support, suggestions and assistance with the manuscript, and C. Long and B. Patel for reviewing the manuscript. This work was supported by an NIH grant to D. L. D. Caspar and an NIH Research Service Award to C.-Y.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yen King.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods (PDF 207 kb)

Supplementary Figure 1

His5-Sup35(1-61)-GFP-Strep(II) samples analysed by SDS-polyacrylamide gel electrophoresis. (PDF 177 kb)

Supplementary Figure 2

The morphology of protein aggregates spontaneously formed in His5-Sup35(1-61)-GFP-Strep(II) solutions. (PDF 212 kb)

Supplementary Table 1

Strain-specific transformation by [PSI] particles. (PDF 117 kb)

Supplementary Table 2

Competition among [PSI] strains. (PDF 110 kb)

Supplementary Table 3

Proteinaceous nature of [PSI]. (PDF 113 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

King, CY., Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004). https://doi.org/10.1038/nature02391

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02391

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing