Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-mobility ultrathin semiconducting films prepared by spin coating

Abstract

The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics1,2,3. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication4,5,6,7,8,9,10,11. Here we demonstrate a technique for spin coating ultrathin (50 Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105 A cm-2) and mobilities greater than 10 cm2 V-1 s-1—an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells12, thermoelectrics13 and memory devices14).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure and thermal properties of the hydrazinium precursor.
Figure 2: Chemical and structural properties of solution-processed chalcogenide films.
Figure 3: Diagram of transistor, with TEM cross-section of spin-coated semiconductors.
Figure 4: Device characteristics for spin-coated chalcogenide channel layers.

Similar content being viewed by others

References

  1. Zaslavsky, A. et al. Ultrathin silicon-on-insulator vertical tunneling transistor. Appl. Phys. Lett. 83, 1653–1655 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Trivedi, V. P. & Fossum, J. G. Scaling fully depleted SOI CMOS. IEEE Trans. Electron Devices 50, 2095–2103 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Forrest, S. R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793–1896 (1997)

    Article  CAS  Google Scholar 

  4. Huitema, H. E. A. et al. Active-matrix displays driven by solution processed polymeric transistors. Adv. Mater. 14, 1201–1204 (2002)

    Article  CAS  Google Scholar 

  5. Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H. E. & Marks, T. J. Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. J. Am. Chem. Soc. 125, 9414–9423 (2003)

    Article  CAS  Google Scholar 

  6. Afzali, A., Dimitrakopoulos, C. D. & Breen, T. L. High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. J. Am. Chem. Soc. 124, 8812–8813 (2002)

    Article  CAS  Google Scholar 

  7. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Katz, H. E. et al. A soluble and air-stable organic semiconductor with high electron mobility. Nature 404, 478–481 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002)

    Article  CAS  Google Scholar 

  10. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)

    Article  CAS  Google Scholar 

  11. Mitzi, D. B. & Kagan, C. R. in Thin-Film Transistors (eds Kagan, C. R. & Andry, P.) 475–513 (Marcel Dekker, New York, 2003)

    Google Scholar 

  12. Britt, J. & Ferekides, C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993)

    Article  ADS  CAS  Google Scholar 

  13. Kim, Y. et al. Structural and thermoelectric transport properties of Sb2Te3 thin films grown by molecular beam epitaxy. J. Appl. Phys. 91, 715–718 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Kyratsi, T., Chrissafis, K., Wachter, J., Paraskevopoulos, K. M. & Kanatzidis, M. G. KSb5S8: A wide bandgap phase-change material for ultra high density rewritable information storage. Adv. Mater. 15, 1428–1431 (2003)

    Article  CAS  Google Scholar 

  15. Domingo, G., Itoga, R. S. & Kannewurf, C. R. Fundamental optical absorption in SnS2 and SnSe2 . Phys. Rev. 143, 536–541 (1966)

    Article  ADS  CAS  Google Scholar 

  16. Shibata, T., Muranushi, Y., Miura, T. & Kishi, T. Electrical characterization of 2H-SnS2 single crystals synthesized by the low temperature chemical vapor transport method. J. Phys. Chem. Solids 52, 551–553 (1991)

    Article  ADS  CAS  Google Scholar 

  17. Streetman, B. G. Solid State Electronic Devices 443 (Prentice-Hall, New Jersey, 1980)

    Google Scholar 

  18. McCandless, B. E., Mondal, A. & Birkmire, R. W. Galvanic deposition of cadmium sulfide thin films. Sol. Energy Mater. Sol. Cells 36, 369–379 (1995)

    Article  CAS  Google Scholar 

  19. Gan, F. Y. & Shih, I. Preparation of thin-film transistors with chemical bath deposited CdSe and CdS thin films. IEEE Trans. Electron Devices 49, 15–18 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Ridley, B. A., Nivi, B. & Jacobson, J. M. All-inorganic field effect transistors fabricated by printing. Science 286, 746–749 (1999)

    Article  CAS  Google Scholar 

  21. Welsh, T. W. B. & Broderson, H. J. Anhydrous hydrazine. III. Anhydrous hydrazine as a solvent. J. Am. Chem. Soc. 37, 816–824 (1915)

    Article  CAS  Google Scholar 

  22. Eisenmann, B. & Hansa, J. Crystal structure of tetrapotassium hexaselenodistannate, K4Sn2Se6 . Z. Kristallogr. 203, 299–300 (1993)

    CAS  Google Scholar 

  23. Pałosz, B., Steurer, W. & Schulz, H. Refinement of SnS2 polytypes 2H, 4H and 18R. Acta Crystallogr. B 46, 449–455 (1990)

    Article  Google Scholar 

  24. Carey, P. G., Smith, P. M., Theiss, S. D. & Wickboldt, P. Polysilicon thin film transistors fabricated on low temperature plastic substrates. J. Vac. Sci. Technol. A 17, 1946–1949 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Van der Veen, J. F. Ion beam crystallography of surfaces and interfaces. Surf. Sci. Rep. 5, 199–287 (1985)

    Article  ADS  CAS  Google Scholar 

  26. Dimitrakopoulos, C. D., Purushothaman, S., Kymissis, J., Callegari, A. & Shaw, J. M. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822–824 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Mitzi, D. B., Dimitrakopoulos, C. D. & Kosbar, L. L. Structurally tailored organic-inorganic perovskites: Optical properties and solution-processed channel materials for thin-film transistors. Chem. Mater. 13, 3728–3740 (2001)

    Article  CAS  Google Scholar 

  28. Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Dimitrakopoulos for discussions, and D. Martinez, S. J. Chey, D. DiMilia, K. Fogel and T. Graham for technical assistance with the preparation of the substrates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Mitzi.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitzi, D., Kosbar, L., Murray, C. et al. High-mobility ultrathin semiconducting films prepared by spin coating. Nature 428, 299–303 (2004). https://doi.org/10.1038/nature02389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02389

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing