Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Designing materials for biology and medicine

Abstract

Biomaterials have played an enormous role in the success of medical devices and drug delivery systems. We discuss here new challenges and directions in biomaterials research. These include synthetic replacements for biological tissues, designing materials for specific medical applications, and materials for new applications such as diagnostics and array technologies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Electrospun fibres of elastin-like artificial proteins made by expression of artificial genes in bacterial cells.
Figure 2: Time series of photographs showing recovery of a shape-memory tube.
Figure 3: Degradable polymeric microchip.
Figure 4: Miroarray of 5,800 yeast proteins, each fused to a hexahistidine sequence that facilitates immobilization on a nickel-coated glass slide. A second fused sequence, that of glutathione S-transferase (GST), allows visualization with anti-GST antibodies.

References

  1. Peppas, N. A. & Langer, R. New challenges in biomaterials. Science 263, 1715–1720 (1994)

    ADS  CAS  Article  Google Scholar 

  2. Ratner, B. D., Hoffman, A. S., Schoen, J. F. & Lemons, J. E. Biomaterials Science, an Introduction to Materials in Medicine 1–8 (Academic, San Diego, 1996)

    Google Scholar 

  3. Bell, E., Ivarsson, B. & Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl Acad. Sci. USA 76, 1274–1278 (1979)

    ADS  CAS  Article  Google Scholar 

  4. Langer, R. Drug delivery and targeting. Nature 392(Suppl.), 5–10 (1998)

    CAS  PubMed  Google Scholar 

  5. Langer, R. Where a pill won't reach. Sci. Am. 288, 50–57 (2003)

    Article  Google Scholar 

  6. Morice, M. et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346, 1773–1780 (2002)

    CAS  Article  Google Scholar 

  7. Langer, R. Perspectives: Drug delivery—Drugs on target. Science 293, 58–59 (2001)

    CAS  Article  Google Scholar 

  8. Vacanti, J. P. & Langer, R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354, 32–34 (1999)

    Article  Google Scholar 

  9. Yurchenco, P. D., Birk, D. E. & Mecham, R. P. (eds) Extracellular Matrix Assembly and Structure (Academic, San Diego, 1994)

  10. van Hest, J. C. M. & Tirrell, D. A. Protein-based materials: Toward a new level of structural control. Chem. Commun. 19, 1897–1904 (2001)

    Article  Google Scholar 

  11. Lee, J., Macosko, C. W. & Urry, D. W. Mechanical properties of cross-linked synthetic elastomeric polypentapeptides. Macromolecules 34, 5968–5974 (2001)

    ADS  CAS  Article  Google Scholar 

  12. Nagapudi, K. et al. Photomediated solid-state cross-linking of an elastin-mimetic recombinant protein polymer. Macromolecules 35, 1730–1737 (2002)

    ADS  CAS  Article  Google Scholar 

  13. McMillan, R. A. & Conticello, V. P. Synthesis and characterization of elastin-mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules 33, 4809–4821 (2000)

    ADS  CAS  Article  Google Scholar 

  14. Huang, L. et al. Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules 33, 2989–2997 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Heilshorn, S. C., DiZio, K. A., Welsh, E. R. & Tirrell, D. A. Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials 24, 4245–4252 (2003)

    CAS  Article  Google Scholar 

  16. Urry, D. W., Parker, T. M., Reid, M. C. & Gowda, D. C. Biocompatibility of the bioeleastic material poly(GVGVP) and its γ-irradiation crosslinked matrix. J. Bioact. Compat. Polym. 3, 263–282 (1991)

    Article  Google Scholar 

  17. Kwon, I., Kirshenbaum, K. & Tirrell, D. A. Breaking the degeneracy of the genetic code. J. Am. Chem. Soc. 125, 7512–7513 (2003)

    CAS  Article  Google Scholar 

  18. Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A. & Mooney, D. J. Engineering growing tissues. Proc. Natl Acad. Sci. USA 99, 12025–12030 (2002)

    ADS  CAS  Article  Google Scholar 

  19. Zhang, S. Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 20, 321–339 (2002)

    CAS  Article  Google Scholar 

  20. Hartgerink, J. D., Beniash, E. & Stupp, S. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proc. Natl Acad. Sci. USA 99, 5133–5138 (2002)

    ADS  CAS  Article  Google Scholar 

  21. Barrera, D. A., Zylstra, E., Lansbury, P. T. & Langer, R. Synthesis and RGD peptide modification of a new biodegradable copolymer system: Poly(lactic acid-co-lysine). J. Am. Chem. Soc. 115, 11010–11011 (1993)

    CAS  Article  Google Scholar 

  22. Cook, A. D. et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J. Biomed. Mater. Res. 35, 513–523 (1997)

    CAS  Article  Google Scholar 

  23. Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994)

    ADS  CAS  Article  Google Scholar 

  24. Halstenberg, S., Panitch, A., Rizzi, S., Hall, H. & Hubbell, J. A. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3, 710–723 (2002)

    CAS  Article  Google Scholar 

  25. Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–768 (1999)

    ADS  CAS  Article  Google Scholar 

  26. Kelch, S. & Lendlein, A. Shape memory polymers. Angew. Chem. Int. Edn Engl. 41, 2034–2057 (2002)

    Article  Google Scholar 

  27. Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002)

    ADS  Article  Google Scholar 

  28. Pathak, C. P., Swahney, A. S. & Hubbell, J. A. Rapid photopolymerization of immunoprotective gelins in contact with cells and tissue. J. Am. Chem. Soc. 114, 8311–8312 (1992)

    CAS  Article  Google Scholar 

  29. Anseth, K., Shastri, V. & Langer, R. Photopolymerizable degradable polyanhydrides with osteocompatibility. Nature Biotechnol. 17, 156–159 (1999)

    CAS  Article  Google Scholar 

  30. Elisseff, J. et al. Transdermal photopolymerization for minimally invasive implantation. Proc. Natl Acad. Sci. USA 96, 3104–3107 (1999)

    ADS  Article  Google Scholar 

  31. Peppas, N. A. Hydrogels and drug delivery. Curr. Opin. Colloid Interf. Sci. 2, 531–537 (1997)

    CAS  Article  Google Scholar 

  32. Lahann, J. et al. A reversible switching of surfaces. Science 299, 371–374 (2003)

    ADS  CAS  Article  Google Scholar 

  33. Brocchini, S., James, K., Tangpasuthadol, V. & Kohn, J. Structure-property correlations in a combinatorial library of degradable biomaterials. J. Biomed. Mater. Res. 42, 66–75 (1998)

    CAS  Article  Google Scholar 

  34. Belu, A. M., Brocchini, S., Kohn, J. & Ratner, B. D. Characterization of combinatorially designed polyarylates by time-of-flight secondary ion mass spectrometry. Rapid Commun. Mass Spectrom. 14, 564–571 (2000)

    ADS  CAS  Article  Google Scholar 

  35. Lynn, D. M., Anderson, D. G., Putnam, D. & Langer, R. Accelerated discovery of synthetic transfection vectors: Parallel synthesis and screening of degradable polymer library. J. Am. Chem. Soc. 123, 8155–8156 (2001)

    CAS  Article  Google Scholar 

  36. Anderson, D., Lynn, D. & Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. 42, 3153–3158 (2003)

    CAS  Article  Google Scholar 

  37. Luo, D. & Saltzman, W. M. Synthetic DNA delivery systems. Nature Biotechnol. 18, 33–37 (2000)

    CAS  Article  Google Scholar 

  38. Pun, S. H. & Davis, M. E. Development of a nonviral gene delivery vehicle for systemic application. Bioconjugate Chem. 13, 630–639 (2002)

    CAS  Article  Google Scholar 

  39. Affleck, D. G., Yu, L., Bull, D. A., Bailey, S. H. & Kim, S. W. Augmentation of myocardial transfection using TerplexDNA: a novel gene delivery system. Gene Ther. 8, 349–353 (2001)

    CAS  Article  Google Scholar 

  40. McManus, M. T. & Sharp, P. A. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet. 3, 737–747 (2002)

    CAS  Article  Google Scholar 

  41. Mathiowitz, E. et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386, 410–414 (1997)

    ADS  CAS  Article  Google Scholar 

  42. Torres-Lugo, M., Garcia, M., Record, R. & Peppas, N. A. pH-sensitive hydrogels as gastrointestinal tract absorption enhancers: Transport mechanisms of salmon calcitonin and other model molecules using the Caco-2 cell model. Biotechnol. Progr. 18, 612–616 (2002)

    CAS  Article  Google Scholar 

  43. Santini, J. T., Cima, M. J. & Langer, R. A controlled-release microchip. Nature 397, 335–338 (1999)

    ADS  CAS  Article  Google Scholar 

  44. Grayson, A. et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nature Mater. 2, 767–772 (2003)

    ADS  CAS  Article  Google Scholar 

  45. Stangel, K. et al. A programmable intraocular CMOS pressure sensor system implant. IEEE J. Solid-State Circuits 36, 1094–1100 (2001)

    ADS  Article  Google Scholar 

  46. Schwartz, M. et al. Single chip CMOS imagers and flexible microelectronic stimulators for a retina implant system. Sensors Actuators 83, 40–46 (2000)

    Article  Google Scholar 

  47. Kaushik, S. et al. Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92, 502–504 (2001)

    CAS  Article  Google Scholar 

  48. Borenstein, J. T. et al. Microfabrication technology for vascularized tissue engineering. Biomed. Microdevices 4, 671–680 (1999)

    Google Scholar 

  49. Eisen, M. B. & Brown, P. O. DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205 (1999)

    CAS  Article  Google Scholar 

  50. Zhu, H. & Snyder, M. Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63 (2003)

    CAS  Article  Google Scholar 

  51. Houseman, B. T., Huh, J. H., Kron, S. J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nature Biotechnol. 20, 270–274 (2002)

    CAS  Article  Google Scholar 

  52. Houseman, B. T. & Mrksich, M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454 (2002)

    CAS  Article  Google Scholar 

  53. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med. 4, 844–847 (1998)

    CAS  Article  Google Scholar 

  54. Fodor, S. P. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991)

    ADS  CAS  Article  Google Scholar 

  55. McGall, G. et al. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc. Natl Acad. Sci. USA 93, 13555–13560 (1996)

    ADS  CAS  Article  Google Scholar 

  56. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    ADS  CAS  Article  Google Scholar 

  57. Sosnowski, R., Tu, E., Butler, W., O'Connell, J. & Heller, M. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl Acad. Sci. USA 94, 1119–1123 (1997)

    ADS  CAS  Article  Google Scholar 

  58. Hui Liu, R., Lenigk, R., Druyor-Sanchez, R. L., Yang, J. & Grodzinski, P. Hybridization enhancement using cavitation microstreaming. Anal. Chem. 75, 1911–1917 (2003)

    Article  Google Scholar 

  59. Kajiyama, T. et al. Genotyping on a thermal gradient DNA chip. Genome Res. 13, 467–475 (2003)

    CAS  Article  Google Scholar 

  60. Cheek, B. J., Steel, A. B., Torres, M. P., Yu, Y. & Yang, H. Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip. Anal. Chem. 73, 5777–5783 (2001)

    CAS  Article  Google Scholar 

  61. Haab, B. B., Dunham, M. J. & Brown, P. O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, 1–13 (2001)

    Article  Google Scholar 

  62. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000)

    ADS  CAS  Google Scholar 

  63. Arenkov, P. et al. Protein microchips: Use for immunoassay and enzymatic reactions. Anal. Biochem. 28, 123–131 (2000)

    Article  Google Scholar 

  64. Hodneland, C. D., Lee, Y.-S., Min, D.-H. & Mrksich, M. Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc. Natl Acad. Sci. USA 99, 5048–5052 (2002)

    ADS  CAS  Article  Google Scholar 

  65. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001)

    ADS  CAS  Article  Google Scholar 

  66. Groves, J. T. & Boxer, S. G. Micropattern formation in supported lipid membranes. Acc. Chem. Res. 35, 149–157 (2002)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Langer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Movie 1

A biodegradable shape memory polymer creates a self-tying knot due to a change in temperature (Courtesy of Andreas Lendlein). (MP4 1321 kb)

Supplementary Movie 2

Video displaying an idealized version of a switchable surface. (MP4 213 kb)

Supplementary Movie Legends and Figure (DOC 83 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Langer, R., Tirrell, D. Designing materials for biology and medicine. Nature 428, 487–492 (2004). https://doi.org/10.1038/nature02388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02388

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing