Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatially restricted microRNA directs leaf polarity through ARGONAUTE1


Gene regulation by RNA interference requires the functions of the PAZ domain protein Argonaute. In plants, mutations in ARGONAUTE1 (AGO1) are associated with distinctive developmental defects that suggest a role for microRNA (miRNA) in organ polarity. Potential targets of miRNA regulation are the homeodomain/leucine zipper genes PHABULOSA (PHB) and PHAVOLUTA (PHV)1. These genes are expressed in a polar fashion in leaf primordia and are required for adaxial cell fate2,3. Here we show that a 21-nucleotide miRNA that directs cleavage of PHB/PHV messenger RNA accumulates first in the embryonic meristem, and then in the abaxial domain of the developing leaf. miRNA distribution is disrupted by mutations in AGO1, indicating that AGO1 affects the regulation of miRNA. In addition, interactions between homeodomain/leucine zipper genes and an allelic series of ago1 indicate that miRNA acts as a signal to specify leaf polarity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations in AGO1 are adaxialized and mutations in REV are enhanced by ago1 and dcl1-9.
Figure 2: Reporter gene expression in ago1-10 demonstrates adaxialization.
Figure 3: Transcripts from miR165 accumulate in the embryonic meristem and on the abaxial side of the leaf.


  1. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002)

    Article  CAS  Google Scholar 

  2. McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001)

    Article  ADS  CAS  Google Scholar 

  3. McConnell, J. R. & Barton, M. K. Leaf polarity and meristem formation in Arabidopsis. Development 125, 2935–2942 (1998)

    CAS  Google Scholar 

  4. Sussex, I. M. Morphogenesis in Solanum tuberosum L.: Experimental investigation of leaf dorsiventrality and orientation in the juvenile shoot. Phytomorphology 5, 286–300 (1955)

    Google Scholar 

  5. Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170–180 (1998)

    Article  CAS  Google Scholar 

  6. Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469–481 (1999)

    CAS  PubMed  Google Scholar 

  7. Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J. 17, 1799–1809 (1998)

    Article  CAS  Google Scholar 

  8. Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002)

    Article  CAS  Google Scholar 

  9. Kataoka, Y., Takeichi, M. & Uemura, T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells 6, 313–325 (2001)

    Article  CAS  Google Scholar 

  10. Harris, A. N. & Macdonald, P. M. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128, 2823–2832 (2001)

    CAS  PubMed  Google Scholar 

  11. Williams, R. W. & Rubin, G. M. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl Acad. Sci. USA 99, 6889–6894 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Caudy, A. A., Myers, M., Hannon, G. J. & Hammond, S. M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496 (2002)

    Article  CAS  Google Scholar 

  13. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728 (2002)

    Article  CAS  Google Scholar 

  14. Llave, C., Kasschau, K. D., Rector, M. A. & Carrington, J. C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002)

    Article  CAS  Google Scholar 

  15. Cubas, P., Lauter, N., Doebley, J. & Coen, E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18, 215–222 (1999)

    Article  CAS  Google Scholar 

  16. Palatnik, J. F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Eshed, Y., Baum, S. F., Perea, J. V. & Bowman, J. L. Establishment of polarity in lateral organs of plants. Curr. Biol. 11, 1251–1260 (2001)

    Article  CAS  Google Scholar 

  18. Kerstetter, R., Bollman, K., Taylor, R., Bomblies, K. & Poethig, R. KANADI regulates organ polarity in Arabidopsis. Nature 411, 706–709 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Sawa, S. et al. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev. 13, 1079–1088 (1999)

    Article  CAS  Google Scholar 

  20. Siegfried, K. R. et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117–4128 (1999)

    CAS  PubMed  Google Scholar 

  21. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000)

    Article  ADS  Google Scholar 

  22. Emery, J. F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003)

    Article  CAS  Google Scholar 

  23. Otsuga, D., DeGuzman, B., Prigge, M. J., Drews, G. N. & Clark, S. E. REVOLUTA regulates meristem initiation at lateral positions. Plant J. 25, 223–236 (2001)

    Article  CAS  Google Scholar 

  24. Reinhart, B. J. & Bartel, D. P. Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831 (2002)

    Article  CAS  Google Scholar 

  25. Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003)

    Article  CAS  Google Scholar 

  26. Chen, Q. et al. The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation. Development 126, 2715–2726 (1999)

    CAS  PubMed  Google Scholar 

  27. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002)

    Article  CAS  Google Scholar 

  28. Song, J. J. et al. The crystal structure of the Argonautez PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature. Struct. Biol. 10, 1026–1032 (2003)

    Article  CAS  Google Scholar 

  29. Foster, T. M. et al. A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14, 1497–1508 (2002)

    Article  CAS  Google Scholar 

  30. Sundaresan, V. et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810 (1995)

    Article  CAS  Google Scholar 

Download references


We thank K. Barton, B. Reinhart and D. Bartel for sharing unpublished data, M. Timmermans and M. Byrne for discussion and critical reading of the manuscript. We also thank T. Mulligan for plant care, and B. Lehner, S. Gao, S. Morgan, R. Shen, R. Umamaheswari and A. Tang, for laboratory assistance. We thank C. Dean, S. Poethig, J. Levin, R. Howden and J. Moore for alerting us to new alleles of ago1. This work was supported by a postdoctoral fellowship from the Cold Spring Harbor Association (C.K.), and grants from the National Science Foundation and the NIH to R.M.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Robert A. Martienssen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary figure

a) RT-PCR of FIL, KAN1 and ERECTA from inflorescences of dcl1-9/rev-6 doubles, dcl1-9 and rev-6 homozygotes and three dilutions of wild type. Lower levels of FIL expression are seen in the dcl1-9/rev-6 double; b) Control hybridization of wild type inflorescence with the sense pre-miRNA probe. (JPG 61 kb)

Supplementary figure legend (DOC 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kidner, C., Martienssen, R. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81–84 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing