Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of gene expression by a natural metabolite-responsive ribozyme

Abstract

Most biological catalysts are made of protein; however, eight classes of natural ribozymes have been discovered that catalyse fundamental biochemical reactions. The central functions of ribozymes in modern organisms support the hypothesis that life passed through an ‘RNA world’ before the emergence of proteins and DNA. We have identified a new class of ribozymes that cleaves the messenger RNA of the glmS gene in Gram-positive bacteria. The ribozyme is activated by glucosamine-6-phosphate (GlcN6P), which is the metabolic product of the GlmS enzyme. Additional data indicate that the ribozyme serves as a metabolite-responsive genetic switch that represses the glmS gene in response to rising GlcN6P concentrations. These findings demonstrate that ribozyme switches may have functioned as metabolite sensors in primitive organisms, and further suggest that modern cells retain some of these ancient genetic control systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The glmS motif.
Figure 2: The glmS motif from B. subtilis serves as a metabolite-responsive ribozyme.
Figure 3: Optimization, divalent metal requirements and rapid metabolite induction of the glmS ribozyme.
Figure 4: Ribozyme boundaries and cleavage site chemistry.
Figure 5: Ribozyme function in vitro negatively correlates with gene expression in vivo.

Similar content being viewed by others

References

  1. Cech, T. R. Self-splicing of group I introns. Annu. Rev. Biochem. 59, 543–568 (1990)

    Article  CAS  Google Scholar 

  2. Frank, D. N. & Pace, N. R. Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu. Rev. Biochem. 67, 153–180 (1998)

    Article  CAS  Google Scholar 

  3. Michel, F. & Feral, J. Structure and activities of group II introns. Annu. Rev. Biochem. 64, 435–461 (1995)

    Article  CAS  Google Scholar 

  4. Doherty, E. A. & Doudna, J. A. Ribozyme structures and mechanisms. Annu. Rev. Biochem. 69, 597–615 (2000)

    Article  CAS  Google Scholar 

  5. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Breaker, R. R. In vitro selection of catalytic polynucleotides. Chem. Rev. 97, 371–390 (1997)

    Article  CAS  Google Scholar 

  7. Osborne, S. E. & Ellington, A. D. Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97, 349–370 (1997)

    Article  CAS  Google Scholar 

  8. Soukup, G. A. & Breaker, R. R. Allosteric nucleic acid catalysts. Curr. Opin. Struct. Biol. 10, 318–325 (2000)

    Article  CAS  Google Scholar 

  9. Breaker, R. R. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31–39 (2002)

    Article  CAS  Google Scholar 

  10. Silverman, S. K. Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9, 377–383 (2003)

    Article  CAS  Google Scholar 

  11. Seetharaman, S., Zivarts, M., Sudarsan, N. & Breaker, R. R. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nature Biotechnol. 19, 336–341 (2001)

    Article  CAS  Google Scholar 

  12. Ptashne, M. & Gann, A. Genes & Signals (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2002)

    Google Scholar 

  13. Nahvi, A. et al. Genetic control by a metabolite-binding mRNA. Chem. Biol. 9, 1043–1049 (2002)

    Article  CAS  Google Scholar 

  14. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Winkler, W. C., Cohen-Chalamish, S. & Breaker, R. R. An mRNA structure that controls gene expression by binding FMN. Proc. Natl Acad. Sci. USA 99, 15908–15913 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Mironov, A. S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111, 747–756 (2002)

    Article  CAS  Google Scholar 

  17. Winkler, W. C. & Breaker, R. R. Genetic control by metabolite-binding riboswitches. Chembiochem 4, 1024–1032 (2003)

    Article  CAS  Google Scholar 

  18. Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C. & Breaker, R. R. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586 (2003)

    Article  CAS  Google Scholar 

  19. Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999)

    Article  CAS  Google Scholar 

  20. Yarnell, W. S. & Roberts, J. W. Mechanism of intrinsic transcription termination and antitermination. Science 284, 611–615 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Mandal, M. & Breaker, R. R. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nature Struct. Mol. Biol. 11, 29–35 (2004)

    Article  CAS  Google Scholar 

  22. Vitreschak, A. G., Rodionov, D. A., Mironov, A. A. & Gelfand, M. S. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet. 20, 44–50 (2004)

    Article  CAS  Google Scholar 

  23. Sudarsan, N., Barrick, J. E. & Breaker, R. R. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9, 644–647 (2003)

    Article  CAS  Google Scholar 

  24. Kubodera, T. et al. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett. 555, 516–520 (2003)

    Article  CAS  Google Scholar 

  25. Barrick, J. E. et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl Acad. Sci. USA (submitted)

  26. Milewski, S. Glucosamine-6-phosphate synthase: the multi-facets enzyme. Biochim. Biophys. Acta 1597, 173–192 (2002)

    Article  CAS  Google Scholar 

  27. Winkler, W. C., Nahvi, A., Sudarsan, N., Barrick, J. E. & Breaker, R. R. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nature Struct. Biol. 10, 701–707 (2003)

    Article  CAS  Google Scholar 

  28. Sudarsan, N., Wickiser, J. K., Nakamura, S., Ebert, M. S. & Breaker, R. R. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. 17, 2688–2697 (2003)

    Article  CAS  Google Scholar 

  29. Soukup, G. A. & Breaker, R. R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5, 1308–1325 (1999)

    Article  CAS  Google Scholar 

  30. Li, Y. & Breaker, R. R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372 (1999)

    Article  CAS  Google Scholar 

  31. Emilsson, G. M., Nakamura, S., Roth, A. & Breaker, R. R. Ribozyme speed limits. RNA 9, 907–918 (2003)

    Article  CAS  Google Scholar 

  32. Breaker, R. R. et al. A common speed limit for RNA-cleaving ribozymes and deoxyribozymes. RNA 9, 949–957 (2003)

    Article  CAS  Google Scholar 

  33. Tang, J. & Breaker, R. R. Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459 (1997)

    Article  CAS  Google Scholar 

  34. Soukup, G. A. & Breaker, R. R. Engineering precision RNA molecular switches. Proc. Natl Acad. Sci. USA 96, 3584–3589 (1999)

    Article  ADS  CAS  Google Scholar 

  35. Koizumi, M., Soukup, G. A., Kerr, J. Q. & Breaker, R. R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nature Struct. Biol. 6, 1062–1071 (1999)

    Article  CAS  Google Scholar 

  36. Breaker, R. R. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31–39 (2002)

    Article  CAS  Google Scholar 

  37. Soukup, G. A., DeRose, E. C., Koizumi, M. & Breaker, R. R. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 7, 524–536 (2001)

    Article  CAS  Google Scholar 

  38. Abrash, H. I., Cheung, C.-C. S. & Davis, J. C. The nonenzymic hydrolysis of nucleoside 2′,3′-phosphates. Biochemistry 6, 1303 (1967)

    Article  Google Scholar 

  39. Saville, B. J. & Collins, R. A. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61, 685–696 (1990)

    Article  CAS  Google Scholar 

  40. Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002)

    Article  ADS  CAS  Google Scholar 

  41. Miller, J. H. A Short Course in Bacterial Genetics 72 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992)

    Google Scholar 

Download references

Acknowledgements

We thank K. Corbino for generating the glmS IGR sequence alignments, and members of the Breaker laboratory for discussions. This work was supported by grants from the NIH and the NSF. R.R.B is also grateful for support from the Yale Liver Center and the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Breaker.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, W., Nahvi, A., Roth, A. et al. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004). https://doi.org/10.1038/nature02362

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02362

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing