Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An explanation for a universality of transition temperatures in families of copper oxide superconductors

Abstract

A remarkable mystery of the copper oxide high-transition-temperature (Tc) superconductors is the dependence of Tc on the number of CuO2 layers, n, in the unit cell of a crystal. In a given family of these superconductors, Tc rises with the number of layers, reaching a peak at n = 3, and then declines1: the result is a bell-shaped curve. Despite the ubiquity of this phenomenon, it is still poorly understood and attention has instead been mainly focused on the properties of a single CuO2 plane. Here we show that the quantum tunnelling of Cooper pairs between the layers2 simply and naturally explains the experimental results, when combined with the recently quantified charge imbalance of the layers3 and the latest notion of a competing order4,5,6,7,8,9 nucleated by this charge imbalance that suppresses superconductivity. We calculate the bell-shaped curve and show that, if materials can be engineered so as to minimize the charge imbalance as n increases, Tc can be raised further.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition temperature within a homologous series.
Figure 2: The T = 0 phase diagram of a one-layer copper oxide as a function of doping, x.
Figure 3: The calculated superconducting order parameters at T = 0 of multilayer copper oxides.

Similar content being viewed by others

References

  1. Scott, B. A. et al. Layer dependence of the superconducting transition temperature of HgBa2Can-1CunO2n+2+δ . Physica C 230, 239–245 (1994)

    Article  ADS  CAS  Google Scholar 

  2. Chakravarty, S., Sudbø, A., Anderson, P. W. & Strong, S. Interlayer tunneling and gap anisotropy in high-temperature superconductors. Science 261, 337–340 (1993)

    Article  ADS  CAS  Google Scholar 

  3. Kotegawa, H. et al. NMR study of carrier distribution and superconductivity in multilayered high-Tc cuprates. J. Phys. Chem. Solids 62, 171–175 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Perali, A., Castellani, S., Di Castro, C. & Grilli, M. d-wave superconductivity near charge instabilities. Phys. Rev. B 54, 16216–16225 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Tallon, J. L. et al. Critical doping in overdoped high-Tc superconductors: a quantum critical point? Phys. Status Solidi B 215, 531–540 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Varma, C. M. Pseudogap phase and the quantum-critical point in copper-oxide metals. Phys. Rev. Lett. 83, 3538–3541 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    Article  ADS  Google Scholar 

  9. Sachdev, S. Colloquium: Order and quantum phase transitions in the cuprate superconductors. Rev. Mod. Phys. 75, 913–932 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Balakirev, F. F. et al. Signature of optimal doping in Hall-effect measurements on a high-temperature superconductor. Nature 424, 912–915 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Jansen, L. & Block, R. On the relation between (maximum) critical temperature and c-axis layered structure in cuprates. I. Evaluation of existing analyses. Physica A 289, 165–177 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Anderson, P. W. c-axis electrodynamics as evidence for the interlayer theory of high-temperature superconductivity. Science 279, 1196–1198 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Moler, K. A., Kirtley, J. R., Hinks, D. G., Li, T. W. & Ming, X. Images of interlayer Josephson vortices in Tl2Ba2CuO6+δ . Science 279, 1193–1196 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Chakravarty, S., Kee, H.-Y. & Abrahams, E. Frustrated kinetic energy, the optical sum rule, and the mechanism of superconductivity. Phys. Rev. Lett. 82, 2366–2369 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Boris, A. V. et al. Josephson plasma resonance and phonon anomalies in trilayer Bi2Sr2Ca2Cu3O10 . Phys. Rev. Lett. 89, 277001 (2002)

    Article  CAS  Google Scholar 

  16. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Khlebnikov, S. Interlayer tunnelling in a non-Fermi-liquid metal. Phys. Rev. B 53, R11964–R11967 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Arrigoni, E., Fradkin E. & Kivelson S. A. Mechanism of high temperature superconductivity in a striped Hubbard model. Preprint at 〈http://arXiv.org/abs/cond-mat/0309572〉 (2003).

  19. Chakravarty, S. Do electrons change their c-axis kinetic energy upon entering the superconducting state? Eur. Phys. J. B 5, 337–343 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Bozovic, I. et al. No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor. Nature 422, 873–875 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Chakravarty, S., Kee, H.-Y. & Nayak, C. Neutron scattering signature of d-density wave order in the cuprates. Int. J. Mod. Phys. B 15, 2901–2909 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Tokunaga, Y. et al. Effect of carrier distribution on superconducting characteristics of the multilayered high-Tc cuprate (Cu0.6C0.4)Ba2Ca3CuO12+y: Cu-63-NMR study. Phys. Rev. B 61, 9707–9710 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Kotegawa, H. et al. Unusual magnetic and superconducting characteristics in multilayered high-Tc cuprates: 63Cu1 NMR study. Phys. Rev. B 64, 064515 (2001)

    Article  ADS  Google Scholar 

  24. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Carlson, E. W., Kivelson, S. A., Emery, V. J. & Manousakis, E. Classical phase fluctuations in high temperature superconductors. Phys. Rev. Lett. 83, 612–615 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Feng, D. L. et al. Electronic structure of the trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ . Phys. Rev. Lett. 88, 107001 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Sato, T. et al. Low energy excitation and scaling in Bi2Sr2Can-1CunO2n+4 (n = 1 - 3): angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 89, 067005 (2002)

    Article  ADS  CAS  Google Scholar 

  28. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ . Nature 422, 592–596 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Yamauchi, H., Karppinen, M. & Tanaka, S. Homologous series of layered cuprates. Physica C 263, 146–150 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Kuzemskaya, I. G., Kuzemsky, A. L. & Cheglokov, A. A. Superconducting properties of the family of mercurocuprates and role of layered structure. J. Low-Temp. Phys. 118, 147–152 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Aspen Centre for Physics, where this collaboration was initiated, and also N. P. Armitage and J. Hoffman for discussions. We acknowledge support from the US National Science Foundation (S.C.), the Canadian Institute for Advanced Research (H.-Y.K. and K.V.), and the Alfred P. Sloan Foundation (H.-Y.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Chakravarty.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarty, S., Kee, HY. & Völker, K. An explanation for a universality of transition temperatures in families of copper oxide superconductors. Nature 428, 53–55 (2004). https://doi.org/10.1038/nature02348

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02348

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing