High-transition-temperature superconductivity in the absence of the magnetic-resonance mode


The fundamental mechanism that gives rise to high-transition-temperature (high-Tc) superconductivity in the copper oxide materials has been debated since the discovery of the phenomenon. Recent work has focused on a sharp ‘kink’ in the kinetic energy spectra of the electrons as a possible signature of the force that creates the superconducting state1,2,3,4,5,6,7,8,9,10,11,12,13,14. The kink has been related to a magnetic resonance13,15,16,17 and also to phonons18. Here we report that infrared spectra of Bi2Sr2CaCu2O8+δ (Bi-2212), shows that this sharp feature can be separated from a broad background and, interestingly, weakens with doping before disappearing completely at a critical doping level of 0.23 holes per copper atom. Superconductivity is still strong in terms of the transition temperature at this doping (Tc ≈ 55 K), so our results rule out both the magnetic resonance peak and phonons as the principal cause of high-Tc superconductivity. The broad background, on the other hand, is a universal property of the copper–oxygen plane and provides a good candidate signature of the ‘glue’ that binds the electrons.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The optical single-particle self-energy of Bi2Sr2CaCu2O8+δ.
Figure 2: Comparison of the self-energy measured with infrared and angle-resolved photoemission for Bi-2212.
Figure 3: Doping-dependent properties of the optical resonance mode.


  1. 1

    Rossat-Mignod, J. et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C 185–189, 86–92 (1991)

    ADS  Article  Google Scholar 

  2. 2

    Mook, H. A. et al. Spin fluctuations in YBa2Cu3O6.6 . Nature 395, 580–582 (1998)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Fong, H. F. et al. Neutron scattering from magnetic excitations in Bi2Sr2CaCu2O8+δ . Nature 398, 588–591 (1999)

    ADS  CAS  Article  Google Scholar 

  4. 4

    He, H. et al. Resonant spin excitation in an overdoped high temperature superconductor. Phys. Rev. Lett. 86, 1610–1613 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kaminski, A. et al. Renormalization of spectral line shape and dispersion below Tc in Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 86, 1070–1073 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Johnson, P. D. et al. Doping and temperature dependence of the mass enhancement observed in the cuprate Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 87, 177007 (2001)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Norman, M. R. & Ding, H. Collective modes and the superconducting-state spectral function of Bi2Sr2CaCu2O8+x . Phys. Rev. B 57, R11089–R11092 (1998)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Campuzano, J. C. et al. Electronic spectra and their relation to the (π, π) collective mode in high-Tc superconductors. Phys. Rev. Lett. 83, 3709–3712 (1999)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Abanov, Ar. et al. A relation between the resonance neutron peak and ARPES data in cuprates. Phys. Rev. Lett. 83, 1652–1655 (1999)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Zasadzinski, J. F. et al. Correlation of tunneling spectra in Bi2Sr2CaCu2O8+δ with the resonance spin excitation. Phys. Rev. Lett. 87, 067005 (2001)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Thomas, G. A. et al. Ba2YCu3O7-d: Electrodynamics of crystals with high reflectivity. Phys. Rev. Lett. 61, 1313–1316 (1988)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Puchkov, A. V. et al. Evolution of the pseudogap state of high-Tc superconductors with doping. Phys. Rev. Lett. 77, 3212–3215 (1996)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Carbotte, J. P. et al. Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors. Nature 401, 354–356 (1999)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Munzar, D., Bernhard, C. & Cardona, M. Possible relationship between the peak in magnetic susceptibility and the in-plane far infrared conductivity of YBCO. Physica C 317–318, 547–549 (1999)

    ADS  Article  Google Scholar 

  15. 15

    Dai, P. et al. Resonance as a measure of pairing correlations in the high-Tc superconductor YBa2Cu3O6.6 . Nature 406, 965–968 (2000)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Demler, E. & Zhang, Z. C. Quantitative test of a microscopic mechanism of high-temperature superconductivity. Nature 396, 733–735 (1998)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Scalapino, D. J. The cuprate pairing mechanism. Science 284, 1282–1283 (1999)

    CAS  Article  Google Scholar 

  18. 18

    Lanzara, A. et al. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Varma, C. M. et al. Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Kaminski, A. et al. Quasiparticles in the superconducting state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 84, 1788–1791 (2000)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  21. 21

    Millis, A. J. & Drew, H. D. Quasiparticles in high temperature superconductors: consistency of angle resolved photoemission and optical conductivity. Preprint at 〈http://www.arXiv.org/cond-mat/0303018〉 (2003).

  22. 22

    Schachinger, E., Tu, J. J. & Carbotte, J. P. Angle-resolved photoemission spectroscopy and optical renormalizations: phonons or spin fluctuations. Phys. Rev. B 67, 214508 (2003)

    ADS  Article  Google Scholar 

  23. 23

    Dai, P. et al. The magnetic excitations spectrum and thermodynamics of high-Tc superconductors. Science 284, 1344–1347 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Hwang, J. et al. Marginal Fermi liquid analysis of 300 K reflectance of Bi2Sr2CaCu2O8+δ. Preprint at 〈http://www.arXiv.org/cond-mat/0306250〉 (2003).

  25. 25

    Chakravarty, S. et al. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    ADS  Article  Google Scholar 

  26. 26

    Loram, J. W. et al. The condensation energy and pseudogap energy scale of Bi:2212 from electronic specific heat. Physica C 341–348, 831–834 (2000)

    ADS  Article  Google Scholar 

  27. 27

    Shibauchi, T. et al. Closing the pseudogap by Zeeman splitting in Bi2Sr2CaCu2O8+y at high magnetic fields. Phys. Rev. Lett. 86, 5763–5766 (2001)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Takenaka, K., Mizuhashi, K., Takagi, H. & Uchida, S. Interplane charge transport in YBa2Cu3O7–y: Spin gap effect on in-plane and out-of-plane resistivity. Phys. Rev. B 50, 6534–6537 (1994)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Homes, C. C. et al. Technique for measuring the reflectance of irregular, submillimeter-sized samples. Appl. Opt. 32, 2976–2983 (1993)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Eisaki, H. et al. Effect of chemical inhomogeneity in the bismuth-based copper oxide superconductors. Phys. Rev. B (in the press); preprint at 〈http://www.arXiv.org/cond-mat/0312429〉 (2004)

Download references


This work has been supported by the Canadian Natural Science and Engineering Research Council and the Canadian Institute of Advanced Research. We thank H. Eisaki and M. Greven for supplying us with several crystals. Their work at Stanford University was supported by the Department of Energy's Office of Basic Sciences, Division of Materials Science. The work at Brookhaven was supported in part by the Department of Energy. We thank D. N. Basov, J. P. Carbotte, G. M. Luke and M. R. Norman for discussions.

Author information



Corresponding author

Correspondence to T. Timusk.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hwang, J., Timusk, T. & Gu, G. High-transition-temperature superconductivity in the absence of the magnetic-resonance mode. Nature 427, 714–717 (2004). https://doi.org/10.1038/nature02347

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing