High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch


Many records of tropical sea surface temperature and marine productivity exhibit cycles of 23 kyr (orbital precession) and 100 kyr during the past 0.5 Myr (refs 1–5), whereas high-latitude sea surface temperature records display much more pronounced obliquity cycles at a period of about 41 kyr (ref. 6). Little is known, however, about tropical climate variability before the mid-Pleistocene transition about 900 kyr ago, which marks the change from a climate dominated by 41-kyr cycles7 (when ice-age cycles and high-latitude sea surface temperature variations were dictated by changes in the Earth's obliquity8,9) to the more recent 100-kyr cycles of ice ages. Here we analyse alkenones from marine sediments in the eastern equatorial Pacific Ocean to reconstruct sea surface temperatures and marine productivity over the past 1.8 Myr. We find that both records are dominated by the 41-kyr obliquity cycles between 1.8 and 1.2 Myr ago, with a relatively small contribution from orbital precession, and that early Pleistocene sea surface temperatures varied in the opposite sense to local annual insolation in the eastern equatorial Pacific Ocean. We conclude that during the early Pleistocene epoch, climate variability at our study site must have been determined by high-latitude processes that were driven by orbital obliquity forcing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Time series of alkenone abundances (C37 total), SST, ice volume19 (benthic δ18O) and local annual insolation at ODP Site 846.
Figure 2: Evolution of spectral densities in the entire Pleistocene (0–1.8 Myr ago).
Figure 3: Coherencies and phase relationships in the early Pleistocene (1.2–1.8 Myr ago).


  1. 1

    Molfino, B. & McIntyre, A. Precessional forcing of nutricline dynamics in the Equatorial Atlantic. Science 249, 766–769 (1990)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Schneider, R. R., et al. in The South Atlantic: Present and Past Circulation (eds Wefer, G., Berger, W. H., Siedler, G. & Webb, D. J.) 527–551 (Springer, Berlin, 1996)

    Google Scholar 

  3. 3

    Rostek, F., Bard, E., Beaufort, L., Sonzogni, C. & Ganssen, G. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep Sea Res. II 44, 1461–1480 (1997)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Budziak, D. S. et al. Late Quaternary insolation forcing on total organic carbon and C37 alkenone variations in the Arabian Sea. Paleoceanography 15, 307–321 (2000)

    ADS  Article  Google Scholar 

  5. 5

    Perks, H., Charles, C. D. & Keeling, R. F. Precessionally forced productivity variations across the equatorial Pacific. Paleoceanography 17, 63–69 (2002)

    Article  Google Scholar 

  6. 6

    Ruddiman, W. F. & McIntyre, A. Ice-age thermal response and climatic role of the surface North Atlantic ocean, 40 to 63 N. Bull. Geol. Soc. Am. 95, 381–396 (1984)

    CAS  Article  Google Scholar 

  7. 7

    Raymo, M. E. & Nisancioglu, K. The 41 kyr world: Milankovitch's other unsolved mystery. Paleoceanography 18, 10.1029/2002PA000791 (2003)

  8. 8

    Shackleton, N. J., Berger, A. & Peltier, W. R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Trans. R. Soc. Edinb. Earth Sci. 81, 251–261 (1990)

    Article  Google Scholar 

  9. 9

    Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Pleistocene evolution: northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4, 353–412 (1989)

    ADS  Article  Google Scholar 

  10. 10

    Milankovitch, M. K. Kanon der erdbestrahlung und seine anwendung anf daseiszeitenproblem. Serb. Acad. Beorg. Spec. Publ. 132 (1941)

  11. 11

    Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: Pacemaker of the ice ages. Science 194, 1121–1132 (1976)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Imbrie, J. et al. On the structure and origin of major glaciation cycles 2: The 100,000 year cycle. Paleoceanography 8, 699–735 (1993)

    ADS  Article  Google Scholar 

  13. 13

    Berger, A. L. Long-term variations of daily insolation and quaternary climatic change. J. Atmos. Sci. 35, 2362–2367 (1978)

    ADS  Article  Google Scholar 

  14. 14

    Clemens, S., Prell, W., Murray, D., Shimmield, G. & Weedon, G. Forcing mechanisms of the Indian ocean monsoon. Nature 353, 720–725 (1991)

    ADS  Article  Google Scholar 

  15. 15

    Beaufort, L., de Garidel-Thoron, T., Mix, A. C. & Pisias, N. G. ENSO-like forcing on oceanic primary production during the late Pleistocene. Science 293, 2440–2444 (2001)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 1719–1724 (2000)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bloemendal, J. & deMenocal, P. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements. Nature 342, 897–900 (1989)

    ADS  Article  Google Scholar 

  18. 18

    Levitus, S. & Boyer, T. P. World Ocean Atlas 1994 Vol. 4, Temperature (NOAA Atlas NESDIS Vol. 4, US Department of Commerce, Washington DC, 1994)

    Google Scholar 

  19. 19

    Mix, A. C., Le, J. & Shackleton, N. J. Benthic foraminerferal stable isotope stratigraphy of Site 846: 0-1.8 Ma. Sci. Res. ODP 138, 839–856 (1995)

    Google Scholar 

  20. 20

    Emeis, K.-C., Doose, H., Mix, A. & Schulz-Bull, D. Alkenone sea-surface temperatures and carbon burial at Site 846 (eastern equatorial Pacific Ocean): the last 1.3 m.y. Sci. Res. ODP 138, 605–614 (1995)

    Google Scholar 

  21. 21

    Lyle, M. W., Prahl, F. G. & Sparrow, M. A. Upwelling and productivity changes inferred from a temperature record in the central equatorial Pacific. Nature 355, 812–815 (1992)

    ADS  Article  Google Scholar 

  22. 22

    Bush, A. B. G. & Philander, S. G. H. The role of ocean-atmosphere interactions in tropical cooling during the last glacial maximum. Science 279, 1341–1344 (1998)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Philander, S. G. H. & Fedorov, A. V. Role of tropics in changing the response to Milankovitch forcing some three million years ago. Paleoceanography 18, 10.1029/2002PA000837 (2003)

  24. 24

    Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303–2310 (1988)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Herbert, T. D. et al. Depth and seasonality of alkenone production along the California margin inferred from a core-top transect. Paleoceanography 13, 263–271 (1998)

    ADS  Article  Google Scholar 

  26. 26

    Muller, P. J., Krist, G., Ruhland, G., Von Storch, I. & Rossell-Mele, A. Calibration of the alkenone paleotemperature index Uk′37 based on core-tops from the eastern South Atlantic and the global ocean (60N–60S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos 77, 379 (1996)

    ADS  Article  Google Scholar 

Download references


We thank the curators of the Ocean Drilling Program (Texas A&M University) for providing samples. The original draft was improved by comments from S. Clemens, K. Lawrence and L. Lisiecki. This work was supported by the NSF (T.D.H.).

Author information



Corresponding author

Correspondence to Zhonghui Liu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Location of ODP Site 846 in the eastern Pacific Ocean. (PDF 211 kb)

Supplementary Figure 2

Normalized Pleistocene SST and (log-transformed) alkenone abundance records, with filtered obliquity and precession signals. (PDF 542 kb)

Supplementary Figure 3

Coherencies and phase relationships in the late Pleistocene (0-0.6 Ma). (PDF 272 kb)

Supplementary Figure Legends (DOC 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Z., Herbert, T. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427, 720–723 (2004). https://doi.org/10.1038/nature02338

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing