Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earthquake nucleation by transient deformations caused by the M = 7.9 Denali, Alaska, earthquake


The permanent and dynamic (transient) stress changes inferred to trigger earthquakes are usually orders of magnitude smaller than the stresses relaxed by the earthquakes themselves, implying that triggering occurs on critically stressed faults1,2,3,4. Triggered seismicity rate increases may therefore be most likely to occur in areas where loading rates are highest and elevated pore pressures, perhaps facilitated by high-temperature fluids, reduce frictional stresses and promote failure5,6,7. Here we show that the 2002 magnitude M = 7.9 Denali, Alaska, earthquake triggered widespread seismicity rate increases throughout British Columbia and into the western United States. Dynamic triggering by seismic waves should be enhanced in directions where rupture directivity focuses radiated energy, and we verify this using seismic and new high-sample GPS recordings of the Denali mainshock. These observations are comparable in scale only to the triggering caused by the 1992 M = 7.4 Landers, California, earthquake1, and demonstrate that Landers triggering did not reflect some peculiarity of the region or the earthquake. However, the rate increases triggered by the Denali earthquake occurred in areas not obviously tectonically active, implying that even in areas of low ambient stressing rates, faults may still be critically stressed and that dynamic triggering may be ubiquitous and unpredictable.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of western North America showing the Denali earthquake faults, tectonic features and sites of seismicity rate change observations.
Figure 2: Local earthquake signals revealed in filtered seismograms.
Figure 3: Seismicity rate change observations.
Figure 4: Map of the distributions of Denali-related seismicity rate changes and measured peak Denali seismic ground velocities.


  1. Hill, D. P. et al. Remote seismicity triggered by the M7.5 Landers, California earthquake of June 28, 1992. Science 260, 1617–1623 (1993)

    Article  ADS  CAS  Google Scholar 

  2. Gomberg, J., Beeler, N. & Blanpied, M. On rate-state and Coulomb failure models. J. Geophys. Res. 105, 7857–7872 (2000)

    Article  ADS  Google Scholar 

  3. Huc, M. & Main, I. G. Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality. J. Geophys. Res. 108(B7), doi:10.1029/2001JB001645 (2003)

  4. Belardinelli, M. E., Bizzarri, A. & Cocco, M. Earthquake triggering by static and dynamic stress changes. J. Geophys. Res. 108(B3), doi:1029/2002JB001779 (2003)

  5. Cocco, M. & Rice, J. R. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J. Geophys. Res. 107(B2), doi:10.1029/2000JB000138 (2002)

  6. Streit, J. E. & Cox, S. F. Fluid pressures at hypocenters of moderate to large earthquakes. J. Geophys. Res. 106, 2235–2243 (2001)

    Article  ADS  Google Scholar 

  7. Sturtevant, B., Kanamori, H. & Brodsky, E. E. Seismic triggering by rectified diffusion in geothermal systems. J. Geophys. Res. 101, 25269–25282 (1996)

    Article  ADS  Google Scholar 

  8. Eberhart-Phillips, D. et al. The 2002 Denali Fault Earthquake, Alaska: A large magnitude, slip-partitioned event. Science 300, 1113–1118 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Ozacar, A. A., Beck, S. & Christiansen, D. H. Source process of the 3 November 2002 Denali fault earthquake (central Alaska) from teleseismic observations. Geophys. Res. Lett. 30, doi:10.1029/2003GL017272 (2003)

  10. Riddihough, R. P. & Hyndman, R. D. in Geology of the Cordilleran Orogen in Canada (eds Gabrielse, H. & Yorath, C. J.) Ch. 13, no. 4, 435–455 (Geologic Survey of Canada, Geology of Canada, Ottawa, 1991)

    Google Scholar 

  11. Miller, M. M. et al. GPS-determination of along-strike variation in Cascadia margin kinematics: Implications for relative plate motion, subduction zone coupling, and permanent deformation. Tectonics 20, 161–176 (2001)

    Article  ADS  Google Scholar 

  12. Anderson, J. G. et al. Seismicity in the western Great Basin apparently triggered by the Landers, California, earthquake 28 June 1992. Bull. Seismol. Soc. Am. 84, 863–891 (1994)

    Google Scholar 

  13. Flück, P, Hyndman, R. D. & Lowe, C. Effective elastic thickness Te of the lithosphere in western Canada. J. Geophys. Res. 108(B9), doi:1029/2002JB002201 (2003)

  14. Seeber, L., Armbruster, J. G., Kim, W.-Y. & Barstow, N. The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania:A shallow rupture triggered by quarry unloading. J. Geophys. Res. 103, 24505–24521 (1998)

    Article  ADS  Google Scholar 

  15. Hough, S. E., Seeber, L. & Armbruster, J. G. Intraplate triggered earthquakes: Observations and interpretation. Bull. Seismol. Soc. Am. 93, 2212–2221 (2003)

    Article  Google Scholar 

  16. Townend, J. & Zoback, M. D. How faulting keeps the crust strong. Geology 28, 399–402 (2000)

    Article  ADS  Google Scholar 

  17. Larson, K., Bodin, P. & Gomberg, J. Using 1 Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300, 1421–1424 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Gomberg, J., Reasenberg, P., Bodin, P. & Harris, R. Earthquake triggering by transient seismic waves following the Landers and Hector Mine, California earthquakes. Nature 411, 462–466 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Galbrielse, H., Monger, J. W. H., Wheeler, J. O. & Yorath, C. J. in Geology of the Cordilleran Orogen in Canada (eds Gabrielse, H. & Yorath, C. J.) Ch. 2, no. 4, 13–59 (Geologic Survey of Canada, Geology of Canada, Ottawa, 1991)

    Book  Google Scholar 

  20. Gomberg, J. & Agnew, D. C. The accuracy of seismic estimates of dynamic strains from Pinon Flat Observatory, California, strainmeter and seismograph data. Bull. Seismol. Soc. Am. 86, 212–220 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. Gomberg.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gomberg, J., Bodin, P., Larson, K. et al. Earthquake nucleation by transient deformations caused by the M = 7.9 Denali, Alaska, earthquake. Nature 427, 621–624 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing