Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualization of release factor 3 on the ribosome during termination of protein synthesis

Abstract

Termination of protein synthesis by the ribosome requires two release factor (RF) classes. The class II RF3 is a GTPase that removes class I RFs (RF1 or RF2) from the ribosome after release of the nascent polypeptide1,2,3. RF3 in the GDP state binds to the ribosomal class I RF complex, followed by an exchange of GDP for GTP and release of the class I RF. As GTP hydrolysis triggers release of RF3 (ref. 4), we trapped RF3 on Escherichia coli ribosomes using a nonhydrolysable GTP analogue. Here we show by cryo-electron microscopy that the complex can adopt two different conformational states. In ‘state 1’, RF3 is pre-bound to the ribosome, whereas in ‘state 2’ RF3 contacts the ribosome GTPase centre. The transfer RNA molecule translocates from the peptidyl site in state 1 to the exit site in state 2. This translocation is associated with a large conformational rearrangement of the ribosome. Because state 1 seems able to accommodate simultaneously both RF3 and RF2, whose position is known from previous studies5,6, we can infer the release mechanism of class I RFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo views of RF3–ribosome complexes seen from the ‘front’.
Figure 2: Interaction patterns of RF3 in the ribosome.
Figure 3: tRNA translocation and 70S conformational changes.
Figure 4: Superposition of RF2 onto the state-1 RF3 ribosomal complex.

Similar content being viewed by others

References

  1. Freistroffer, D. V., Pavlov, M. Y., MacDougall, J., Buckingham, R. H. & Ehrenberg, M. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 16, 4126–4133 (1997)

    Article  CAS  Google Scholar 

  2. Grentzmann, G. et al. Release factor RF-3 GTPase activity acts in disassembly of the ribosome termination complex. RNA 4, 973–983 (1998)

    Article  CAS  Google Scholar 

  3. Kisselev, L., Ehrenberg, M. & Frolova, L. Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J. 22, 175–182 (2003)

    Article  CAS  Google Scholar 

  4. Zavialov, A. V., Buckingham, R. H. & Ehrenberg, M. A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107, 115–124 (2001)

    Article  CAS  Google Scholar 

  5. Klaholz, B. P. et al. Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421, 90–94 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Rawat, U. B. et al. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87–90 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Laurberg, M. et al. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J. Mol. Biol. 303, 593–603 (2000)

    Article  CAS  Google Scholar 

  9. Stark, H. et al. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389, 403–406 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Valle, M. et al. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21, 3557–3567 (2002)

    Article  CAS  Google Scholar 

  11. Stark, H. et al. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nature Struct. Biol. 9, 849–854 (2002)

    CAS  PubMed  Google Scholar 

  12. Agrawal, R. K., Penczek, P., Grassucci, R. A. & Frank, J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl Acad. Sci. USA 95, 6134–6138 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Stark, H., Rodnina, M. V., Wieden, H. J., van Heel, M. & Wintermeyer, W. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100, 301–309 (2000)

    Article  CAS  Google Scholar 

  14. Aevarsson, A. et al. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13, 3669–3677 (1994)

    Article  CAS  Google Scholar 

  15. Czworkowski, J., Wang, J., Steitz, T. A. & Moore, P. B. The crystal structure of elongation factor G complexed with GDP, at 2.7 Å resolution. EMBO J. 13, 3661–3668 (1994)

    Article  CAS  Google Scholar 

  16. Wilson, D. N. et al. in The Ribosome. Structure, Function, Antibiotics and Cellular Interactions (ed. Garrett, R. A.) 495–508 (American Society for Microbiology Press, Washington, DC, 2000)

    Google Scholar 

  17. Aevarsson, A. Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation. J. Mol. Evol. 41, 1096–1104 (1995)

    Article  CAS  Google Scholar 

  18. Agrawal, R. K., Heagle, A. B., Penczek, P., Grassucci, R. A. & Frank, J. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nature Struct Biol. 6, 643–647 (1999)

    Article  CAS  Google Scholar 

  19. Lancaster, L., Kiel, M. C., Kaji, A. & Noller, H. F. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 111, 129–140 (2002)

    Article  CAS  Google Scholar 

  20. Mora, L., Zavialov, A., Ehrenberg, M. & Buckingham, R. H. Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli. Mol. Microbiol. 50, 1467–1476 (2003)

    Article  CAS  Google Scholar 

  21. Zavialov, A. V., Mora, L., Buckingham, R. H. & Ehrenberg, M. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol. Cell 10, 789–798 (2002)

    Article  CAS  Google Scholar 

  22. van Heel, M. et al. Single-particle cryo electron microscopy: towards atomic resolution. Quart. Rev. Biophys. 33, 307–369 (2000)

    Article  CAS  Google Scholar 

  23. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996)

    Article  CAS  Google Scholar 

  24. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 31, 721–745 (2003)

    Google Scholar 

  25. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  26. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  27. Plewniak, F. et al. PipeAlign: a new toolkit for protein family analysis. Nucleic Acids Res. 31, 3829–3832 (2003)

    Article  CAS  Google Scholar 

  28. Matadeen, R. et al. The Escherichia coli large ribosomal subunit at 7.5 Å resolution. Structure Fold Des. 15, 1575–1583 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Ehrenberg and A. Zavialov for purified RF3 and 70S ribosome RCs; T. Pape for assistance in the early phase of this work; S. Chen, M. Schatz, R. Schmidt, and G. Willoughby for support; and R. Buckingham for sharing data before publication. B.P.K. thanks D. Moras, P. Schultz, M. Yusupov, G. Yusupova and B. Rees for support, discussions and comments on the manuscript; O. Poch for discussions on multiple sequence alignments; E. Orlova for initial image processing suggestions; and H. Saibil for the loan of a Tecnai 12 cryo-holder. The project was financed in part by grants from the Biotechnology and Biological Sciences Research Council, the European Union, and the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno P. Klaholz.

Ethics declarations

Competing interests

M.v.H. is a shareholder of Image Science Software GmbH, distributors of the IMAGIC-5 software.

Supplementary information

Supplementary Information (DOC 23 kb)

Supplementary Figure 1

Principle of local multivariate statistical analysis exemplified on a typical view (side-view of the 70S ribosome); this approach was applied to all class averages (and to the particles included in these), and allowed particle separation enabling the analysis of two specific intermediate states. (JPG 39 kb)

Supplementary Figure 2

Some representative class averages (a and c) and their corresponding re-projections from the final 3D reconstructions (b and d) of states 1 and 2, respectively. (JPG 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaholz, B., Myasnikov, A. & van Heel, M. Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427, 862–865 (2004). https://doi.org/10.1038/nature02332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02332

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing