Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of an angiogenic factor that when mutated causes susceptibility to Klippel–Trenaunay syndrome

Abstract

Angiogenic factors are critical to the initiation of angiogenesis and maintenance of the vascular network1. Here we use human genetics as an approach to identify an angiogenic factor, VG5Q, and further define two genetic defects of VG5Q in patients with the vascular disease Klippel–Trenaunay syndrome (KTS)2,3. One mutation is chromosomal translocation t(5;11), which increases VG5Q transcription. The second is mutation E133K identified in five KTS patients, but not in 200 matched controls. VG5Q protein acts as a potent angiogenic factor in promoting angiogenesis, and suppression of VG5Q expression inhibits vessel formation. E133K is a functional mutation that substantially enhances the angiogenic effect of VG5Q. VG5Q shows strong expression in blood vessels and is secreted as vessel formation is initiated. VG5Q can bind to endothelial cells and promote cell proliferation, suggesting that it may act in an autocrine fashion. We also demonstrate a direct interaction of VG5Q with another secreted angiogenic factor, TWEAK (also known as TNFSF12)4,5. These results define VG5Q as an angiogenic factor, establish VG5Q as a susceptibility gene for KTS, and show that increased angiogenesis is a molecular pathogenic mechanism of KTS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positional cloning of the VG5Q gene.
Figure 2: Expression profile of VG5Q and dynamic redistribution and secretion of VG5Q protein during angiogenesis.
Figure 3: VG5Q is an angiogenic factor and both VG5Q E133K and KTS translocation t(5;11) are functional mutations.
Figure 4: VG5Q interacts with TWEAK.

Similar content being viewed by others

References

  1. Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Berry, S. A. et al. Klippel–Trenaunay syndrome. Am. J. Med. Genet. 79, 319–326 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Jacob, A. G. et al. Klippel–Trenaunay syndrome: spectrum and management. Mayo Clin. Proc. 73, 28–36 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Wiley, S. R. et al. A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity 15, 837–846 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Lynch, C. N. et al. TWEAK induces angiogenesis and proliferation of endothelial cells. J. Biol. Chem. 274, 8455–8459 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Buschmann, I. & Schaper, W. Arteriogenesis versus angiogenesis: Two mechanisms of vessel growth. News Physiol. Sci. 14, 121–125 (1999)

    PubMed  Google Scholar 

  7. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Folkman, J. & D'Amore, P. A. Blood vessel formation: what is its molecular basis? Cell 87, 1153–1155 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Whelan, A. J., Watson, M. S., Porter, F. D. & Steiner, R. D. Klippel–Trenaunay–Weber syndrome associated with a 5:11 balanced translocation. Am. J. Med. Genet. 59, 492–494 (1995)

    Article  CAS  PubMed  Google Scholar 

  11. Durocher, D., Henckel, J., Fersht, A. R. & Jackson, S. P. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4, 387–394 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Guglielmi, B. & Werner, M. The yeast homolog of human PinX1 is involved in rRNA and small nucleolar RNA maturation, not in telomere elongation inhibition. J. Biol. Chem. 277, 35712–35719 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Hoggart, C. J. et al. Control of confounding of genetic associations in stratified populations. Am. J. Hum. Genet. 72, 1492–1504 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Devlin, B., Roeder, K. & Wasserman, L. Genomic control, a new approach to genetic-based association studies. Theor. Popul. Biol. 60, 155–166 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Shriver, M. D. et al. Ethnic-affiliation estimation by use of population-specific DNA markers. Am. J. Hum. Genet. 60, 957–964 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barker, D., Schafer, M. & White, R. Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell 36, 131–138 (1984)

    Article  CAS  PubMed  Google Scholar 

  17. Pfeffer, S. Membrane domains in the secretory and endocytic pathways. Cell 112, 507–517 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Mignatti, P., Morimoto, T. & Rifkin, D. B. Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J. Cell. Physiol. 151, 81–93 (1992)

    Article  CAS  PubMed  Google Scholar 

  19. Calvert, J. T. et al. Allelic and locus heterogeneity in inherited venous malformations. Hum. Mol. Genet. 8, 1279–1289 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Baskerville, P. A., Ackroyd, J. S. & Browse, N. L. The etiology of the Klippel–Trenaunay syndrome. Ann. Surg. 202, 624–627 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wiley, S. R. & Winkles, J. A. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev. 14, 241–249 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Q. et al. Identification and molecular characterization of de novo translocation t(8;14)(q22.3;q13) associated with a vascular and tissue overgrowth syndrome. Cytogenet. Cell Genet. 95, 183–188 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Happle, R. Klippel–Trenaunay syndrome: is it a paradominant trait? Br. J. Dermatol. 128, 465–466 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. Jackson, C. L., et al. in Current Protocols in Human Genetics (ed. Dracopoli, N. C.) 3.2.1–3.2.29 (Wiley, New York, 1996)

    Google Scholar 

  25. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995)

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L., Fan, C., Topol, S. E., Topol, E. J. & Wang, Q. Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science 302, 1578–1581 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan, C., Liu, M. & Wang, Q. Functional analysis of TBX5 missense mutations associated with Holt–Oram syndrome. J. Biol. Chem. 278, 8780–8785 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Fan, C. et al. Novel TBX5 mutations and molecular mechanism for Holt–Oram syndrome. J. Med. Genet. 40, e29 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Plow for critical reading of the manuscript; H. Yagita for plasmid hTWEAK/pCR3.1; S. Chen, M. K. Cathcart, A. Sadgephour, Z. Tang, C. Fan, P. B. Imrey, S. Archacki, D. Kikta, J. Poruban and A. Moore for help; and KTS patients for their participation in this study. This work was supported by NIH grants to Q.W..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, XL., Kadaba, R., You, SA. et al. Identification of an angiogenic factor that when mutated causes susceptibility to Klippel–Trenaunay syndrome. Nature 427, 640–645 (2004). https://doi.org/10.1038/nature02320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02320

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing