Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reburial of fossil organic carbon in marine sediments


Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales1,2. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ3,4, and much research has focused on understanding the mechanisms of preservation of organic carbon5. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils6,7 and sediments8,9. However, little is understood about the environmental roles, transport and distribution of black carbon. Here we apply isotopic analyses to graphitic black carbon samples isolated from pre-industrial marine and terrestrial sediments. We find that this material is terrestrially derived and almost entirely depleted of radiocarbon, suggesting that it is graphite weathered from rocks, rather than a combustion product. The widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments. It could be responsible for biasing radiocarbon dating of sedimentary organic carbon, and also reveals a closed loop in the carbon cycle. Depending on its susceptibility to oxidation, this recycled carbon may be locked away from the biologically mediated carbon cycle for many geologic cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concentrations and fluxes of GBC off the Washington coast.
Figure 2: Plot of Δ versus δ13C for all TOC (open symbols) and GBC (closed symbols) samples.

Similar content being viewed by others


  1. Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995)

    Article  CAS  Google Scholar 

  2. Berner, R. A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 97–122 (1989)

    Article  Google Scholar 

  3. Hartnett, H. E., Keil, R. G., Hedges, J. I. & Devol, A. H. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391, 572–574 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Hedges, J. I. et al. Sedimentary organic matter preservation: a test for selective degradation under oxic conditions. Am. J. Sci. 299, 529–555 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Hedges, J. I. et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31, 945–958 (2000)

    Article  CAS  Google Scholar 

  6. Skjemstad, J. O., Taylor, J. A. & Smernik, R. J. Estimation of charcoal (char) in soils. Commun. Soil Sci. Plant Anal. 30, 2283–2298 (1999)

    Article  CAS  Google Scholar 

  7. Schmidt, M. W. I., Skjemstad, J. O., Gehrt, E. & Kögel-Knabner, I. Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 50, 351–365 (1999)

    Article  Google Scholar 

  8. Gélinas, Y., Prentice, K. M., Baldock, J. A. & Hedges, J. I. An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils. Environ. Sci. Technol. 35, 3519–3525 (2001)

    Article  ADS  PubMed  Google Scholar 

  9. Middleburg, J. J., Nieuwenhuize, J. & van Breugel, P. Black carbon in marine sediments. Mar. Chem. 65, 245–252 (1999)

    Article  Google Scholar 

  10. Goldberg, E. D. Black Carbon in the Environment: Properties and Distribution (Wiley & Sons, New York, 1985)

    Google Scholar 

  11. Schmidt, M. W. I. & Noack, A. G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 14, 777–793 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Science 280, 1911–1913 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Carpenter, R., Beasley, T. M., Zahnle, D. & Somayajulu, B. L. K. Cycling of fallout (Pu, 241Am, 137Cs) and natural (U, Th, 210Pb) radionuclides in Washington continental slope sediments. Geochim. Cosmochim. Acta 51, 1897–1921 (1987)

    Article  ADS  CAS  Google Scholar 

  14. Prahl, F. G. & Carpenter, R. Hydrocarbons in Washington coastal sediments. Estuar. Coast. Shelf Sci. 18, 703–720 (1984)

    Article  ADS  CAS  Google Scholar 

  15. Vogel, J. S., Nelson, D. E. & Southon, J. R. C-14 background levels in an Accelerator Mass Spectrometry system. Radiocarbon 29, 323–333 (1987)

    Article  CAS  Google Scholar 

  16. Stuiver, M. & Polach, H. A. Reporting of 14C data. Radiocarbon 19, 355–363 (1977)

    Article  Google Scholar 

  17. Wakeham, S. G. et al. Hydrocarbons in Lake Washington sediments: a 25-year retrospective in an urban lake. Environ. Sci. Technol. (in the press)

  18. Wakeham, S. G., Lee, C., Hedges, J. I., Hernes, P. J. & Peterson, M. L. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta 61, 5363–5369 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Eglinton, T. I. et al. Composition, age and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem. Geophys. Geosyst. 3, 1–27 (2002)

    Article  Google Scholar 

  20. Weis, P. L. The origin of epigenetic graphite: evidence from isotopes. Geochim. Cosmochim. Acta 45, 2325–2332 (1981)

    Article  ADS  CAS  Google Scholar 

  21. Schidlowski, M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambr. Res. 106, 117–134 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Petsch, S. T., Smernik, R. J., Eglinton, T. I. & Oades, J. M. A solid-state 13C-NMR study of kerogen degradation during black shale weathering. Geochim. Cosmochim. Acta 65, 1867–1882 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Herring, J. R. in The Carbon Cycle and Atmospheric CO2: Natural Variations, Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 419–442 (AGU, Washington, 1985)

    Google Scholar 

  24. Suman, D. O., Kuhlbusch, T. A. J. & Lim, B. in Sediment Records of Biomass Burning and Global Change (ed. Clark, J. S.) 271–293 (Springer, Berlin, 1997)

    Book  Google Scholar 

  25. Sackett, W. M., Poag, C. W. & Eadie, B. J. Kerogen recycling in the Ross Sea, Antarctica. Science 185, 1045–1047 (1974)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Blair, N. E. et al. The persistence of memory: the fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochim. Cosmochim. Acta 67, 63–73 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Eglinton, T. I. et al. Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277, 796–799 (1997)

    Article  CAS  Google Scholar 

  28. Petsch, S. T., Berner, R. A. & Eglinton, T. I. A field study of the chemical weathering of ancient sedimentary organic matter. Org. Geochem. 31, 475–487 (2000)

    Article  CAS  Google Scholar 

  29. Jahnke, R. A. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob. Biogeochem. Cycles 10, 71–88 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Druffel, E. R. M., Williams, P. M., Livingston, H. D. & Koide, M. Variability of natural and bomb-produced radionuclide distributions in abyssal red clay sediments. Earth Planet. Sci. Lett. 71, 205–214 (1984)

    Article  ADS  CAS  Google Scholar 

Download references


We thank the scientific staff at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry for assistance with radiocarbon analyses, C. Preston and C. Swanston for radiocarbon analysis of the Stillaguamish River sample, S. Petsch and R. Smernik for providing kerogen samples for analysis, and P. Quay and E. Druffel for editing and comments. This work was supported by a mini-grant from LLNL CAMS and by grants from the NSF; A.F.D. thanks the NSF for a graduate research fellowship; Y.G. thanks the Canadian NSERC and Quebec NATEQ for support for this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Angela F. Dickens.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickens, A., Gélinas, Y., Masiello, C. et al. Reburial of fossil organic carbon in marine sediments. Nature 427, 336–339 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing