Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses

Abstract

The formation of glasses is normal for substances that remain liquid over a wide temperature range (the ‘good glassformers’) and can be induced for most liquids if cooling is fast enough to bypass crystallization. During reheating but still below the melting point, good glassformers exhibit glass transitions as they abruptly transform into supercooled liquids, whereas other substances transform directly from the glassy to the crystalline state. Whether water exhibits a glass transition before crystallization has been much debated over five decades1,2,3,4,5,6. For the last 20 years, the existence of a glass transition at 136 K (ref. 3) has been widely accepted2,3,4, but the transition exhibits qualities difficult to reconcile with our current knowledge of glass transitions2,5,6. Here we report detailed calorimetric characterizations of hyperquenched inorganic glasses that, when heated, do not crystallize before reaching their glass transition temperatures. We compare our results to the behaviour of glassy water and find that small endothermic effects, such as the one attributed to the glass transition of water, are only a ‘shadow’ of the real glass transition occurring at higher temperatures, thus substantiating the conclusion6 that the glass transition of water cannot be probed directly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DSC upscans of hyperquenched and annealed HQGs.
Figure 2: Comparison of DSC upscans of aged, hyperquenched mineral glass with the equivalent water DSC upscans for HQGW and ASW.
Figure 3: Effect of Ta on shadow glass transitions.

Similar content being viewed by others

References

  1. Pryde, J. A. & Jones, G. O. Properties of vitreous water. Nature 170, 635–639 (1952)

    Article  ADS  Google Scholar 

  2. Angell, C. A. Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102, 2627–2649 (2002)

    Article  CAS  Google Scholar 

  3. Johari, G. P., Hallbrucker, A. & Mayer, E. The glass transition of hyperquenched glassy water. Nature 330, 552–553 (1987)

    Article  ADS  CAS  Google Scholar 

  4. Johari, G. P. Does water need a new Tg? J. Chem. Phys. 116, 8067–8073 (2002)

    Article  ADS  CAS  Google Scholar 

  5. MacFarlane, D. R. & Angell, C. A. Nonexistent glass transition for amorphous solid water. J. Phys. Chem. 88, 759–762 (1984)

    Article  CAS  Google Scholar 

  6. Velikov, V., Borick, S. & Angell, C. A. The glass transition of water, based on hyperquenching experiments. Science 294, 2335–2338 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Jenniskens, P., Banham, S. F., Blake, D. F. & McCoustra, M. R. S. Liquid water in the domain of cubic crystalline ice I-c. J. Chem. Phys. 107, 1232–1241 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Johari, G. P. Liquid state of low-density pressure-amorphized ice above its Tg. J. Phys. Chem. B 102, 4711–4714 (1998)

    Article  CAS  Google Scholar 

  9. Smith, R. S. & Kay, B. D. The existence of supercooled liquid water at 150 K. Nature 398, 788–791 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Kivelson, D. & Tarjus, G. H2O below 277 K: A novel picture. J. Phys. Chem. B 105, 6620–6627 (2001)

    Article  CAS  Google Scholar 

  12. Hallbrucker, A. & Mayer, E. Calorimetric study of the vitrified liquid water to cubic ice phase transition. J. Phys. Chem. 91, 503–505 (1987)

    Article  CAS  Google Scholar 

  13. Kohl, I., Mayer, E. & Hallbrucker, A. The glassy water-cubic ice system: a comparative study by X-ray diffraction and differential scanning calorimetry. Phys. Chem. Chem. Phys. 2, 1579–1586 (2000)

    Article  CAS  Google Scholar 

  14. Hallbrucker, A., Mayer, E. & Johari, G. P. Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water. A comparison with hyperquenched glassy water. J. Phys. Chem. 93, 4986–4990 (1989)

    Article  CAS  Google Scholar 

  15. Angell, C. A. & Tucker, J. C. Heat capacity changes in glass-forming aqueous solutions, and the glass transition in vitreous water. J. Phys. Chem. 84, 268–272 (1980)

    Article  CAS  Google Scholar 

  16. Ghormley, J. A. Enthalpy changes and heat-capacity changes in transformations from high-surface-area amorphous ice to stable hexagonal ice. J. Chem. Phys. 48, 503–511 (1968)

    Article  ADS  CAS  Google Scholar 

  17. Hodge, I. M. Enthalpy recovery in amorphous materials. J. Non-Cryst. Solids 169, 211–266 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Johari, G. P. Water's endotherm, the sub-Tg peak of glasses and Tg of water. J. Chem. Phys. 119, 2935–2937 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Huang, J. & Gupta, P. Enthalpy relaxation in thin glass fibers. J. Non-Cryst. Solids 151, 175–181 (1992)

    Article  ADS  CAS  Google Scholar 

  20. Yue, Y.-Z., Jensen, S. L. & Christiansen, J. de C. Physical aging in a hyperquenched glass. Appl. Phys. Lett. 81, 2983–2985 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Angell, C. A. et al. Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses. J. Phys. Condensed Matter 15, S1051–S1068 (2003)

    Article  CAS  Google Scholar 

  22. Inoue, A., Masumoto, T. & Chen, H. S. Enthalpy relaxation behaviour of metal-metal (Zr-Cu) amorphous alloys upon annealing. J. Mater. Sci. 20, 4057–4068 (1985)

    Article  ADS  CAS  Google Scholar 

  23. Angell, C. A. in Water Science for Food, Health, Agriculture and Environment (eds Berk, Z., Leslie, R. B., Lilford, P. J. & Mizrahi, S.) 1–30 (Technomic, Lancaster, 2001)

    Google Scholar 

  24. Ngai, K. L., Magill, J. H. & Plazek, D. J. Flow, diffusion and crystallization of supercooled liquids: Revisited. J. Chem. Phys. 112, 1887–1892 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Hofer, K., Hallbrucker, A., Mayer, E. & Johari, G. P. Vitrified dilute aqueous-solutions. 3. Plasticization of waters H-bonded network and the glass-transition temperatures minimum. J. Phys. Chem. 93, 4674–4677 (1989)

    Article  CAS  Google Scholar 

  26. Johari, G. P., Hallbrucker, A. & Mayer, E. Two calorimetrically distinct states of liquid water below 150 kelvin. Science 273, 90–92 (1996)

    Article  ADS  CAS  Google Scholar 

  27. Johari, G. P., Hallbrucker, A. & Mayer, E. The dielectric behavior of vapor-deposited amorphous solid water and of its crystalline forms. J. Chem. Phys. 95, 6849–6855 (1991)

    Article  ADS  CAS  Google Scholar 

  28. Angell, C. A. Amorphous water. Annu. Rev. Phys. Chem. 55, 559–583 (2004)

    Article  ADS  Google Scholar 

  29. Handa, Y. P. & Klug, D. D. Heat capacity and glass transition of amorphous ice. J. Chem. Phys. 92, 3323–3325 (1988)

    Article  CAS  Google Scholar 

  30. Fleissner, G., Hallbrucker, A. & Mayer, E. Increasing contact-ion pairing as a supercooled water anomaly. Estimation of the fictive temperature of hyperquenched glassy water. J. Phys. Chem. B 102, 6239–6247 (1998)

    Article  CAS  Google Scholar 

  31. Axten, C. W. et al. Man-made Vitreous Fibers: Nomenclature, Chemical and Physical Properties (ed. Easters, W.) 17 (TIMA, Inc., Stamford, CT, 1991–1993)

    Google Scholar 

  32. Yue, Y.-Z., Christiansen, J. de C. & Jensen, S. L. Determination of the fictive temperature for a hyperquenched glass. Chem. Phys. Lett. 357, 20–24 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support of Rockwool International, Denmark, Department of Production, Aalborg University, Denmark (to Y.-Z.Y.) and for a Solid State Chemistry grant from the National Science Foundation (C.A.A.). We thank S.L. Jensen for help with samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Austen Angell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, Y., Angell, C. Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses. Nature 427, 717–720 (2004). https://doi.org/10.1038/nature02295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02295

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing