Abstract
Cytoskeletal molecular motors belonging to the kinesin and dynein families transport cargos (for example, messenger RNA, endosomes, virus) on polymerized linear structures called microtubules in the cell1. These ‘nanomachines’ use energy obtained from ATP hydrolysis to generate force2, and move in a step-like manner on microtubules. Dynein3,4,5 has a complex and fundamentally different structure from other motor families. Thus, understanding dynein's force generation can yield new insight into the architecture and function of nanomachines. Here, we use an optical trap6 to quantify motion of polystyrene beads driven along microtubules by single cytoplasmic dynein motors. Under no load, dynein moves predominantly with a mixture of 24-nm and 32-nm steps. When moving against load applied by an optical trap, dynein can decrease step size to 8 nm and produce force up to 1.1 pN. This correlation between step size and force production is consistent with a molecular gear mechanism. The ability to take smaller but more powerful strokes under load—that is, to shift gears—depends on the availability of ATP. We propose a model whereby the gear is downshifted through load-induced binding of ATP at secondary sites in the dynein head.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998)
Hackney, D. D. The kinetic cycles of myosin, kinesin and dynein. Annu. Rev. Physiol. 58, 731–750 (1996)
Asai, D. J. & Koonce, M. P. The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol. 11, 196–202 (2001)
King, S. M. AAA domains and organization of the dynein motor unit. J. Cell Sci. 113, 2521–2526 (2000)
King, S. M. The dynein microtubule motor. Biochim. Biophys. Acta 1496, 60–75 (2000)
Rice, S. E. & Spudich, J. A. Building and using optical traps to study properties of molecular motors. Methods Enzymol. 361, 112–133 (2003)
Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995)
Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)
Gelles, J., Schnapp, B. J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988)
Visscher, K. & Block, S. M. Versatile optical traps with feedback control. Methods Enzymol. 298, 460–489 (1998)
Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999)
Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E. & Oiwa, K. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400, 586–590 (1999)
Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. Dynein-mediated cargo transport in vivo: A switch controls travel distance. J. Cell Biol. 148, 945–955 (2000)
Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993)
Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003)
Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997)
Hirakawa, E., Higuchi, H. & Toyoshima, Y. Y. Processive movement of single 22S dynein molecules occurs only at low ATP concentrations. Proc. Natl Acad. Sci. USA 97, 2533–2537 (2000)
Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E. & Yanagida, T. Dynein arms are oscillating force generators. Nature 393, 711–714 (1998)
Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997)
Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999)
Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation and disassembly of protein complexes. Genome Res. 9, 27–43 (1999)
Vale, R. D. AAA proteins. Lords of the ring. J. Cell Biol. 150, F13–F19 (2000)
Samso, M., Radermacher, M., Frank, J. & Koonce, M. P. Structural characterization of a dynein motor domain. J. Mol. Biol. 276, 927–937 (1998)
Silvanovich, A., Li, M., Serr, M., Mische, S. & Hays, T. S. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol. Biol. Cell 14, 1355–1365 (2003)
Mocz, G. & Gibbons, I. R. Model for the motor component of dynein heavy chain based on homology to the AAA family of oligomeric ATPases. Structure 9, 93–103 (2001)
Whiteheart, S. W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 (1994)
Bingham, J. B., King, S. J. & Schroer, T. A. Purification of dynactin and dynein from brain tissue. Methods Enzymol. 298, 171–184 (1998)
Schroer, T. A. & Sheetz, M. P. Two activators of microtubule-based vesicle transport. J. Cell Biol. 115, 1309–1318 (1991)
Sloboda, R. D. & Rosenbaum, J. L. Purification and assay of microtubule-associated proteins (MAPs). Methods Enzymol. 85, 171–184 (1982)
King, S. J. & Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biol. 2, 20–24 (2000)
Acknowledgements
R.M. acknowledges a postdoctoral fellowship from the International Human Frontier Science Program Organization. B.C.C. acknowledges support from an NIH training grant. This work was supported by a NIGMS and a CRCC grant (to S.P.G.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Mallik, R., Carter, B., Lex, S. et al. Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004). https://doi.org/10.1038/nature02293
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature02293
This article is cited by
-
A force-balance model for centrosome positioning and spindle elongation during interphase and anaphase B
Indian Journal of Physics (2022)
-
Number Dependence of Microtubule Collective Transport by Kinesin and Dynein
Journal of the Indian Institute of Science (2021)
-
One Dimensional Exclusion Process with Dynein Inspired Hops: Simulation and Mean Field Analysis
Journal of Statistical Physics (2021)
-
CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module
Nature Communications (2020)
-
Cargo adaptors regulate stepping and force generation of mammalian dynein–dynactin
Nature Chemical Biology (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.