Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cytoplasmic dynein functions as a gear in response to load


Cytoskeletal molecular motors belonging to the kinesin and dynein families transport cargos (for example, messenger RNA, endosomes, virus) on polymerized linear structures called microtubules in the cell1. These ‘nanomachines’ use energy obtained from ATP hydrolysis to generate force2, and move in a step-like manner on microtubules. Dynein3,4,5 has a complex and fundamentally different structure from other motor families. Thus, understanding dynein's force generation can yield new insight into the architecture and function of nanomachines. Here, we use an optical trap6 to quantify motion of polystyrene beads driven along microtubules by single cytoplasmic dynein motors. Under no load, dynein moves predominantly with a mixture of 24-nm and 32-nm steps. When moving against load applied by an optical trap, dynein can decrease step size to 8 nm and produce force up to 1.1 pN. This correlation between step size and force production is consistent with a molecular gear mechanism. The ability to take smaller but more powerful strokes under load—that is, to shift gears—depends on the availability of ATP. We propose a model whereby the gear is downshifted through load-induced binding of ATP at secondary sites in the dynein head.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Stall force of cytoplasmic dynein.
Figure 2: Dynein takes shorter steps under load.
Figure 3: Cytoplasmic dynein takes predominantly 24- and 32-nm steps under no load.
Figure 4: Model for an ATP-regulated gear.


  1. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998)

    ADS  CAS  Article  Google Scholar 

  2. Hackney, D. D. The kinetic cycles of myosin, kinesin and dynein. Annu. Rev. Physiol. 58, 731–750 (1996)

    CAS  Article  Google Scholar 

  3. Asai, D. J. & Koonce, M. P. The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol. 11, 196–202 (2001)

    CAS  Article  Google Scholar 

  4. King, S. M. AAA domains and organization of the dynein motor unit. J. Cell Sci. 113, 2521–2526 (2000)

    CAS  PubMed  Google Scholar 

  5. King, S. M. The dynein microtubule motor. Biochim. Biophys. Acta 1496, 60–75 (2000)

    CAS  Article  Google Scholar 

  6. Rice, S. E. & Spudich, J. A. Building and using optical traps to study properties of molecular motors. Methods Enzymol. 361, 112–133 (2003)

    CAS  Article  Google Scholar 

  7. Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995)

    ADS  CAS  Article  Google Scholar 

  8. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)

    CAS  Article  Google Scholar 

  9. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988)

    ADS  CAS  Article  Google Scholar 

  10. Visscher, K. & Block, S. M. Versatile optical traps with feedback control. Methods Enzymol. 298, 460–489 (1998)

    CAS  Article  Google Scholar 

  11. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999)

    ADS  CAS  Article  Google Scholar 

  12. Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E. & Oiwa, K. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400, 586–590 (1999)

    ADS  CAS  Article  Google Scholar 

  13. Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. Dynein-mediated cargo transport in vivo: A switch controls travel distance. J. Cell Biol. 148, 945–955 (2000)

    CAS  Article  Google Scholar 

  14. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993)

    ADS  CAS  Article  Google Scholar 

  15. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003)

    ADS  CAS  Article  Google Scholar 

  16. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997)

    ADS  CAS  Article  Google Scholar 

  17. Hirakawa, E., Higuchi, H. & Toyoshima, Y. Y. Processive movement of single 22S dynein molecules occurs only at low ATP concentrations. Proc. Natl Acad. Sci. USA 97, 2533–2537 (2000)

    ADS  CAS  Article  Google Scholar 

  18. Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E. & Yanagida, T. Dynein arms are oscillating force generators. Nature 393, 711–714 (1998)

    ADS  CAS  Article  Google Scholar 

  19. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997)

    ADS  CAS  Article  Google Scholar 

  20. Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999)

    ADS  CAS  Article  Google Scholar 

  21. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation and disassembly of protein complexes. Genome Res. 9, 27–43 (1999)

    CAS  PubMed  Google Scholar 

  22. Vale, R. D. AAA proteins. Lords of the ring. J. Cell Biol. 150, F13–F19 (2000)

    CAS  Article  Google Scholar 

  23. Samso, M., Radermacher, M., Frank, J. & Koonce, M. P. Structural characterization of a dynein motor domain. J. Mol. Biol. 276, 927–937 (1998)

    CAS  Article  Google Scholar 

  24. Silvanovich, A., Li, M., Serr, M., Mische, S. & Hays, T. S. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol. Biol. Cell 14, 1355–1365 (2003)

    CAS  Article  Google Scholar 

  25. Mocz, G. & Gibbons, I. R. Model for the motor component of dynein heavy chain based on homology to the AAA family of oligomeric ATPases. Structure 9, 93–103 (2001)

    CAS  Article  Google Scholar 

  26. Whiteheart, S. W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 (1994)

    CAS  Article  Google Scholar 

  27. Bingham, J. B., King, S. J. & Schroer, T. A. Purification of dynactin and dynein from brain tissue. Methods Enzymol. 298, 171–184 (1998)

    CAS  Article  Google Scholar 

  28. Schroer, T. A. & Sheetz, M. P. Two activators of microtubule-based vesicle transport. J. Cell Biol. 115, 1309–1318 (1991)

    CAS  Article  Google Scholar 

  29. Sloboda, R. D. & Rosenbaum, J. L. Purification and assay of microtubule-associated proteins (MAPs). Methods Enzymol. 85, 171–184 (1982)

    Google Scholar 

  30. King, S. J. & Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biol. 2, 20–24 (2000)

    CAS  Article  Google Scholar 

Download references


R.M. acknowledges a postdoctoral fellowship from the International Human Frontier Science Program Organization. B.C.C. acknowledges support from an NIH training grant. This work was supported by a NIGMS and a CRCC grant (to S.P.G.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Steven P. Gross.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mallik, R., Carter, B., Lex, S. et al. Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing