Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1

Abstract

Wasabi, horseradish and mustard owe their pungency to isothiocyanate compounds. Topical application of mustard oil (allyl isothiocyanate) to the skin activates underlying sensory nerve endings, thereby producing pain, inflammation and robust hypersensitivity to thermal and mechanical stimuli1,2. Despite their widespread use in both the kitchen and the laboratory, the molecular mechanism through which isothiocyanates mediate their effects remains unknown. Here we show that mustard oil depolarizes a subpopulation of primary sensory neurons that are also activated by capsaicin, the pungent ingredient in chilli peppers, and by Δ9-tetrahydrocannabinol (THC), the psychoactive component of marijuana. Both allyl isothiocyanate and THC mediate their excitatory effects by activating ANKTM1, a member of the TRP ion channel family recently implicated in the detection of noxious cold3,4. These findings identify a cellular and molecular target for the pungent action of mustard oils and support an emerging role for TRP channels as ionotropic cannabinoid receptors5,6,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: THC and mustard oil activate a subset of sensory neurons.
Figure 2: Activation of ANKTM1 by mustard oils in transfected mammalian cells and Xenopus oocytes.
Figure 3: Activation of ANKTM1 by cannabinoids.
Figure 4: ANKTM1 is a receptor-operated channel.

Similar content being viewed by others

References

  1. Wall, P. D. & Melzack, R. The Textbook of Pain (W. B. Saunders, London, 1999)

    Google Scholar 

  2. Jancso, N., Jancso-Gabor, A. & Szolcsanyi, J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br. J. Pharmacol. 31, 138–151 (1967)

    CAS  Google Scholar 

  3. Jaquemar, D., Schenker, T. & Trueb, B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J. Biol. Chem. 274, 7325–7333 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bisogno, T. et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol. 134, 845–852 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Di Marzo, V., Bisogno, T. & De Petrocellis, L. Anandamide: some like it hot. Trends Pharmacol. Sci. 22, 346–349 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Ross, R. A. Anandamide and vanilloid TRPV1 receptors. Br. J. Pharmacol. 140, 790–801 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lembeck, F. & Holzer, P. Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedebergs Arch. Pharmacol. 310, 175–183 (1979)

    Article  CAS  PubMed  Google Scholar 

  10. Louis, S. M., Jamieson, A., Russell, N. J. & Dockray, G. J. The role of substance P and calcitonin gene-related peptide in neurogenic plasma extravasation and vasodilatation in the rat. Neuroscience 32, 581–586 (1989)

    Article  CAS  PubMed  Google Scholar 

  11. Szallasi, A. & Blumberg, P. M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51, 159–212 (1999)

    CAS  PubMed  Google Scholar 

  12. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Jordt, S. E., McKemy, D. D. & Julius, D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol. 13, 487–492 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Reeh, P. W., Kocher, L. & Jung, S. Does neurogenic inflammation alter the sensitivity of unmyelinated nociceptors in the rat? Brain Res. 384, 42–50 (1986)

    Article  CAS  PubMed  Google Scholar 

  18. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Jancso, G., Kiraly, E. & Jancso-Gabor, A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 270, 741–743 (1977)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Simons, C. T., Carstens, M. I. & Carstens, E. Oral irritation by mustard oil: self-desensitization and cross-desensitization with capsaicin. Chem. Senses 28, 459–465 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Caterina, M. J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Zygmunt, P. M., Andersson, D. A. & Hogestatt, E. D. Δ9-Tetrahydrocannabinol and cannabinol activate capsaicin-sensitive sensory nerves via a CB1 and CB2 cannabinoid receptor-independent mechanism. J. Neurosci. 22, 4720–4727 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilson, R. K., Kwan, T. K., Kwan, C. Y. & Sorger, G. J. Effects of papaya seed extract and benzyl isothiocyanate on vascular contraction. Life Sci. 71, 497–507 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Patacchini, R., Maggi, C. A. & Meli, A. Capsaicin-like activity of some natural pungent substances on peripheral endings of visceral primary afferents. Naunyn Schmiedebergs Arch. Pharmacol. 342, 72–77 (1990)

    Article  CAS  PubMed  Google Scholar 

  25. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Rang, H. P., Bevan, S. & Dray, A. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 57–78 (Churchill-Livingstone, London, 1994)

    Google Scholar 

  28. Smart, D. et al. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br. J. Pharmacol. 129, 227–230 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jordt, S. E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA 97, 8134–8139 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Hollopeter for generation of the adult rat trigeminal cDNA library and to B. Trueb for providing us with human ANKTM1 cDNA. This work was supported by grants from the Segerfalk Foundation and the Swedish Research Council (P.Z. and E.H.), the American Heart Association (H.C.) and the National Institutes of Health (I.M., D.B. and D.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Julius.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1: Cold activates TRPM8, but not ANKTM1. (PDF 148 kb)

41586_2004_BFnature02282_MOESM2_ESM.pdf

Supplementary Figure 2: Effects of cold on mustard oil-evoked currents in Xenopus oocytes expressing human ANKTM1. (PDF 62 kb)

41586_2004_BFnature02282_MOESM3_ESM.pdf

Supplementary Figure 3: Effects of intracellular Ca2+-chelation on receptor operated activation of the Ca2+-dependent chloride current in Xenopus oocytes. (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordt, SE., Bautista, D., Chuang, Hh. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004). https://doi.org/10.1038/nature02282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02282

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing